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Abstract

Due to fiscal foresight, standard fiscal VAR models are inherently susceptible to
issues of nonfundamentalness and noncausality, which can result in invalid estimates.
While these problems have been extensively addressed in the fiscal literature, they
have largely been overlooked in Brazilian fiscal VAR studies. To address this gap,
we estimate a noncausal fiscal VAR model for Brazil—an alternative specification
that may correct these issues—and use it to forecast Brazilian GDP. The results
show that the noncausal VAR model outperforms the standard purely causal VAR in
terms of forecasting performance, particularly when considering the typical Brazilian
fiscal VAR dataset. This suggests that fiscal expectations may play a crucial role
in shaping the dynamics of Brazilian GDP.
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1 Introduction
The seminal work by Sims (1980) sparked the widespread use of vector autoregressive
(VAR) models in empirical macroeconomic studies, quickly becoming a cornerstone in the
economics literature. It wasn’t long before this class of models became a fundamental tool
for a wide range of macroeconomic analyses, including fiscal ones. Fiscal VAR models
have been widely adopted for forecasting and estimating fiscal multipliers. However,
the empirical literature on these models has yet to reach a consensus that can guide
policymakers, with significant disagreement remaining on issues such as the size of the
multipliers and the effects of fiscal shocks on key macroeconomic aggregates.

One possible cause of this inability to reach a consensus may lie in the very nature
of fiscal policy. Due to legislative and procedural delays, fiscal policies are typically
implemented only after a significant lag following their public announcements, allowing
agents’ expectations to adjust immediately and giving rise to fiscal foresight. Unlike other
types of macroeconomic policies, this gives fiscal policy the potential for noncausality,
which, in turn, leads to the issue of nonfundamentalness in fiscal data.1

At a theoretical level, nonfundamentalness occurs when the MA representation of a VAR
model is not invertible. This can arise, among other potential causes, when the infor-
mation set available to agents in the real economy is broader than the information set
available to the econometrician. Noncausality, on the other hand, occurs when the roots
of the AR characteristic polynomial lie within the unit circle. As a result, to be recov-
ered, the model’s dynamics depend not only on past (lags) and present values of economic
variables but also on their future values (leads).

Both phenomena are closely connected. An econometrician’s inability to observe all
the information available to agents is, in most cases, linked to the role of expectations.
Economic agents can observe both economic fundamentals and their own expectations,
making decisions based on this comprehensive information set. Econometricians, however,
while having access to data records on economic fundamentals, rarely have access to
reliable historical data on market expectations. Consequently, the information sets of
econometricians and agents often diverge due to expectational components, leading to
nonfundamentalness.2 Since expectations can be interpreted as the process of anticipating
the future to determine the present, the close connection between nonfundamentalness
and noncausality becomes evident.

This connection is particularly relevant in the fiscal context, where nonfundamentalness
is strongly associated with fiscal foresight, which is closely tied to expectations about
future fiscal aggregates. According to Leeper et al. (2008), although macroeconomists
acknowledge the possibility of fiscal foresight and theoretically develop its implications,
empirical models are often not grounded in theory. This poses a significant challenge to

1Indeed, even Blanchard and Perotti (1999), in their seminal paper on fiscal multipliers, foreseen
potential issues arising from the anticipation of fiscal policy through expectations: “Implicit in our
approach is the assumption that the policy innovations we have estimated were indeed unanticipated by
the private sector. While we share this assumption with the whole VAR literature, we recognize that it is
particularly problematic here: most of the changes in tax and transfer programs are known at least a few
quarters before they are implemented. We do not have a general solution to this problem.” Blanchard
and Perotti (1999), p. 18.

2Nonfundamentalness, however, can also arise from other causes. See Alessi et al. (2008) for a survey
of these causes.
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the econometric analysis of fiscal policy: the widespread occurrence of time series with
a non-invertible moving average component.3 In other words, fiscal foresight engenders
nonfundamentalness.

The presence of such phenomena exposes traditional models considered by econometri-
cians to potential biases of varying directions and magnitudes (Canova and Sahneh, 2018;
Gourieroux and Jasiak, 2016; Leeper et al., 2013; Alessi et al., 2008; Fernández-Villaverde
et al., 2007). Depending on the case, this can result in either an underestimation or over-
estimation of policy effects. The bias can be substantial enough to reverse the sign
of impulse-response functions. Similarly, forecasts produced by econometricians using
models affected by nonfundamentalness may be inconsistent and suboptimal. This prob-
lem spurred the development of testing procedures for both noncausality (Sahneh, 2015)
and nonfundamentalness (Forni and Gambetti, 2014; Canova and Sahneh, 2018; Sahneh,
2015). Additionally, alternative model specifications have emerged in the literature to
address these issues when they are identified. One approach to handling noncausality in
data (and, consequently, nonfundamentalness) is the use of a noncausal VAR model.4

The noncausal VAR model extends the standard (purely causal) VAR specification by
incorporating not only present and past values (lags) of economic variables but also their
future values (leads), capturing expectational components. This framework was first
introduced by Lanne and Saikkonen (2013), generalizing the literature on univariate non-
causal autoregressive models to encompass general multivariate processes.5 Building on
this work, Nyberg and Saikkonen (2014) developed a forecasting procedure for noncausal
VAR models, extending the univariate forecasting methodology of Lanne et al. (2012) to
general multivariate settings. Further advancements include the work of Gourieroux and
Jasiak (2016), who proposed a state-space representation for these models, and Lanne
and Luoto (2016), who introduced a noncausal Bayesian VAR.

Despite the growth of this literature, Brazilian research on fiscal VARs still does not
appear to show significant concern with the problem. Aside from the work of Vonbun
and Lima (2020), who applied the tests by Forni and Gambetti (2014) and Canova and
Sahneh (2018) to identify nonfundamentalness in typical Brazilian fiscal VAR datasets,
no other studies seem to have effectively considered these phenomena. Although Vonbun
and Lima (2020) diagnosed the presence of nonfundamentalness in Brazilian fiscal data,
their attempt to address it by widening the information set—one of the potential methods
for handling nonfundamentalness—was unsuccessful.6

3In their words: “Fiscal foresight poses a formidable challenge because, as Yang (2005) shows, it
generates an equilibrium with a non-invertible VARMA representation. Non-invertibility, in turn, implies
that the fundamental shocks to tax policy cannot be recovered from current and past observable data, a
central assumption of conventional econometric methods.” Leeper et al. (2008), page 2.

4Other approaches include, for example, augmenting the model with additional data, such as prox-
ies for forward-looking variables. This strategy aims to expand the model’s information set to make
it informationally sufficient, thereby rendering the MA component invertible and resolving the issue.
Identifying suitable proxies and validating their relevance, however, is far from straightforward. Vonbun
and Lima (2020), for instance, attempted to address nonfundamentalness in Brazilian fiscal data using
this method but were unsuccessful.

5For univariate noncausal models, see, e.g., Breid et al. (1991), Lanne and Saikkonen (2011), Lanne
et al. (2012), Lanne et al. (2011), and Hecq et al. (2020).

6The objective of Vonbun and Lima (2020) was to test the representative fiscal VAR model from
the Brazilian literature to assess the presence of nonfundamentalness, which, as previously discussed,
is closely related to noncausality in the fiscal context. Their main analysis included variables such
as GDP, public investment, public expenditure, and tax revenue. The authors also highlighted the
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The objective of this paper is to properly address the issues of fiscal foresight, nonfunda-
mentalness, and noncausality in Brazilian fiscal data by employing a noncausal fiscal VAR
model using the fiscal dataset typically considered in the Brazilian fiscal VAR literature.

Although noncausal VAR models are better suited for addressing specification issues
arising from noncausality, at the time of writing this paper, they unfortunately lacked
a structural-form solution. Significant challenges remain in obtaining identification re-
lations for their structural representations, which prevents the computation of impulse-
response functions.7 Nonetheless, the reduced-form estimates of noncausal VAR models
can still be used for forecasting. Depending on their performance, these estimates may
provide evidence of noncausality (and, by extension, nonfundamentalness) in fiscal data.

To evaluate the importance of considering noncausality and nonfundamentalness, we es-
timated a noncausal VAR model and used it to compute pseudo-out-of-sample forecasts
for GDP. To achieve this, we submitted data to the model selection procedure proposed
by Lanne and Saikkonen (2013) to determine the number of lags and leads that best char-
acterize the dynamics of the variables we considered. A purely forward-looking noncausal
VAR was selected. When estimated, the model displayed relevant statistical significance
for all variables as determinants of fiscal dynamics, potentially evidencing the importance
of considering nonfundamentalness and noncausality in fiscal data. We then compared
the performance of a standard (purely causal) VAR model with that of the selected
noncausal model. The forecasts obtained from the noncausal model consistently outper-
formed those of the standard purely causal model across almost all predictive accuracy
metrics and forecast horizons considered. This superiority was notably pronounced for
shorter horizons—especially for one-quarter ahead forecasts.

This paper is organized as follows. Section 2 motivates our discussion by formally in-
troducing the concepts of fiscal foresight, nonfundamentalness, and noncausality, along
with their interrelationships. Section 3 details the noncausal VAR model, discussing its
selection, estimation, and forecasting procedures. Section 4 focuses on our empirical
application, covering data description, model selection, and forecast results using our
estimated model. Finally, Section 5 provides concluding remarks.

2 Fiscal Foresight, Nonfundamentalness and Noncausal-
ity

To contextualize the importance of noncausal models, this section formally introduces
the concepts of fiscal foresight, nonfundamentalness, and noncausality, along with their
interrelationship. The discussion presented here closely follows Nelimarkka (2019). The
formal definition of the noncausal econometric model to be empirically estimated in this
work is deferred to Section 3.

significance of public debt and the debt/GDP ratio as important variables. These variables were included
experimentally to address nonfundamentalness (and, by extension, noncausality), but the attempt was
unsuccessful. They also sought to incorporate market expectations using FOCUS data from the Central
Bank of Brazil, though this effort did not yield positive results either.

7During the review process, we learned that Nelimarkka (2019) had developed a method for computing
impulse-response functions using noncausal VAR models. However, due to time constraints, we were
unable to implement this method. As a result, we defer the computation of impulse-response functions
to future research, focusing this paper on forecasting.
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In order to formally illustrate the problem of nonfundamentalness, consider the equilib-
rium of a linearized macroeconomic model for k observable variables in yt with a vec-
tor autoregressive moving average (VARMA) representation, as presented in Nelimarkka
(2019):

A(L)yt = B(L)ut, (1)

where A(L) = I − A1L − · · · − ApL
p, B(L) = B0 + B1L + · · · + BdL

d, and ut is a
vector containing the k uncorrelated structural shocks driving the economy such that
Et[ut+j] = 0 when j > 0 and Et[ut+j] = ut+j for j ≤ 0. E[·] denotes the expectation
conditional on the information set of the agents. A(L) and B(L) are k × k matrix
polynomials, with L being the usual lag operator, that determine the unique equilibrium
of the model in terms of finite lags up to a truncation. A(L) is assumed to be stable,
implying an MA representation yt = A(L)−1B(L)ut.

When the MA polynomial B(L) in (1) is invertible in the past, i.e. |B(z)| does not
have roots within the unit circle, structural shocks and impulse response functions can
be obtained from the reduced-form error term εt = B0ut with a standard purely causal
VAR(p) model C(L)yt = εt, where C(L) = I −C1L− · · · −CpL

p, after the imposition of
identification restrictions in the matrix B0.

However, as Nelimarkka (2019) points out, under nonfundamentalness the polynomial
B(L) is not invertible in the past, which implies that there is no VAR(∞) representation
to recover shocks ut only from the past history of yt. In this case, fitting a standard
VAR model to yt produces a nonfundamental error term which is a linear combination of
the past shocks (Lippi and Reichlin, 1994; Fernández-Villaverde et al., 2007), distorting
conclusions drawn from the estimated impulse response functions.

The nonfundamentalness problem may arise for multiple reasons, but typically it is closely
linked to the effects of expectations unobservable to the econometrician on the actions of
agents, which in turn influence macroeconomic variables. This potential source of non-
fundamentalness occurs when the econometrician’s information set diverges from that of
the economy’s real agents due to insufficient information about future variables—namely,
expectations. This divergence leads to (and defines) noncausality. Consequently, both
phenomena—nonfundamentalness and noncausality—can be understood as informational
issues that, in practice, often manifest as different forms of omitted variable bias.

To illustrate the relationship between fiscal foresight, nonfundamentalness, and non-
causality, we follow the example provided by Nelimarkka (2019), which encompasses
both fundamental and nonfundamental processes as particular cases. This framework as-
sumes that the observable variables yt include all state variables except for k uncorrelated
exogenous variables in zt.8 From Sims (2002), when the MA component is noninvertible,
yt has a general forward-looking solution9

yt = Θ1yt−1 +Θc +Θ0zt +Θy

∞∑
s=1

Θs−1
f ΘzEtzt+s. (2)

8See Nelimarkka (2019), pages 104 and 107.
9As reported by Nelimarkka (2019), “matrices Θ1, Θc, Θ0, Θy, Θf , Θz are functions of parameters of

the model of dimensions k× k, k× 1, k× k, k×m, m×m and m× k, respectively. m is a dimension of
the unstable block of the system, defined in Sims (2002).”
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Exogenous variables are driven by unanticipated shocks when zt = ut. In this case,
a standard purely causal VARMA representation is obtained as a consequence of the
vanishing of the last term resulting directly in a VAR(1) representation. On the other
hand, when agents have q-periods ahead foresight of exogenous variables, zt = ut−q and
the equilibrium is determined by

yt = Θ1yt−1 +Θc +Θ0ut−q +ΘyΘzut−q+1 +ΘyΘfΘzut−q+2 + · · ·+ΘyΘ
q−1
f Θzut. (3)

This representation corresponds to the VARMA representation (1) of the model. As
noted by Nelimarkka (2019), despite the fact that the more distant expected events of zt
obtain a weaker weight in the forward looking solution (2), the most recent innovation ut

informative about the future event zt+q is discounted the heaviest by a factor of ΘyΘ
q−1
f Θz

in (3). This reverse discount easily causes the noninvertibility of the MA polynomial
B(L) = Θ0L

q +ΘyΘzL+ · · ·+ΘyΘ
q−1
f Θz, with the most recent shocks having the least

influence on the overall dynamics of yt.

The noninvertible solution prevents the recovery of the news shock contained in ut based
only on the present and past values of yt. As demonstrated by Nelimarkka (2019), it is
possible to rewrite the VARMA model (1) under noninvertibility as a noncausal autore-
gressive representation of yt, representing structural shocks in terms of both past and
future terms.10 Let l roots of B(z) lie within the unit circle. Then yt can be written as
the following noncausal model:

c̄lβ(L)
−1Badj(L)α(L−1)−1A(L)yt = ut−l, (4)

where c̄l is constant, Badj(L) is the adjoint matrix of B(z), and α(z−1)−1 and β(z)−1 are
scalar convergent power series expansions in z−1 and z, respectively. Through the lead
polynomial α(z−1)−1, the time-shifted structural shocks ut−l are functions of the past,
current and future terms of yt.

While the history of yt lacks enough information to capture the variation of ut, movements
of the lagged shocks are captured by a linear weighted sum of the past and future values
of yt. Consequently, both the lags and the leads of the observable variables are sufficient
to recover the structural shocks that are now anticipated due to the time-shifting.

In this theoretical framework, agents’ foresight capacity gives rise to nonfundamentalness,
which, in this context, may manifest as noncausality. A model is considered noncausal
when its dynamics depend not only on the present and past values (lags) of economic
variables but also on future values (leads) that reflect expectational components. In
the fiscal setting, nonfundamentalness is typically associated with fiscal foresight, which
relates to expectations about the future of fiscal aggregates. As a result, the issue often
arises from omitted variables tied to these expectations, highlighting a strong link between
nonfundamentalness and noncausality. Diagnosing nonfundamentalness can thus provide
a way to identify noncausality, while addressing noncausality offers a potential solution
to nonfundamentalness.

10For further details, see Nelimarkka (2019), Appendix 4.A.
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3 The Noncausal VAR model
This exposition closely follows Lanne and Saikkonen (2011, 2013).

3.1 Specification

As Nelimarkka (2019) pointed out, “direct inference on the noncausal representation (4)
is infeasible.”11 Lanne and Saikkonen (2013) solve this problem by considering an n-
dimensional stochastic process yt specified as

Φ(L)Ψ(L−1)yt = ϵt, t = 0,±1,±2, . . . , (5)

where Φ(L) = In − Φ1 − · · · − ΦrL
r and Ψ(L−1) = In − Ψ1L

−1 − · · · − ΨsL
−s are n× n

matrix polynomials in the lag operator L and ϵt is a n × 1 sequence of independent,
identically distributed (continuous) random vectors with zero mean and finite positive
definite covariance matrix. Moreover, to ensure stationarity and the existence of an MA
representation, the matrix polynomials Φ(z) and Ψ(z) are assumed to have their zeros
outside the unit disc, so that

detΦ(z) ̸= 0, |z| ≤ 1 and detΨ(z) ̸= 0, |z| ≤ 1. (6)

If Ψj ̸= 0 for some j ∈ {1, . . . , s}, equation (5) defines a noncausal vector autoregression,
referred to as purely noncausal when Φ1 = · · · = Φr = 0. The corresponding standard
purely causal model is obtained when Ψ1 = · · · = Ψs = 0. In this case, the former
condition in (6) guarantees the stationarity of the model. In the general setup of equation
(5) the same is true for the process

ut = Ψ(L−1)yt. (7)

Specifically, there exists a δ1 > 0 such that Φ(z)−1 has a well-defined power series repre-
sentation Φ(z)−1 =

∑∞
j=0Mjz

j = M(z) for |z| < 1+ δ1. Consequently, the process ut has
the causal moving average representation

ut = M(L)ϵt =
∞∑
j=0

Mjϵt−j. (8)

Notice that M0 = In and that the coefficient matrices Mj decay to zero at a geometric
rate as j → ∞ (cf. Kohn, 1979, Lem. 3). When convenient, Lanne and Saikkonen (2013)
assumes Mj = 0 for j < 0.

Writing Φ(z)−1 = (detΦ(z))−1Ξ(z) = M(z), where Ξ(z) is the adjoint polynomial matrix
of Φ(z), the authors obtain the relation detΦ(L)ut = Ξ(L)ϵt and, by the definition of ut,

Ψ(L−1)wt = Ξ(L)ϵt, (9)
11Nelimarkka (2019), p. 107.
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where wt = det(Φ(L))yt. Notice that Ξ(z) is a matrix polynomial with degree at most
(n − 1)r and, since Φ(0) = In, we have also Ξ(0) = In. By the latter condition in
(6) one can find a 0 < δ2 < 1 such that Ψ(z−1)−1Ξ(z) has a well-defined power series
representation Ψ(z−1)−1Ξ(z) =

∑∞
j=−(n−1)r Njz

−j = N(z−1) for |z| > 1 − δ2. Thus, the
process wt has the representation

wt =
∞∑

j=−(n−1)r

Njϵt+j, (10)

where the coefficient matrices Nj decay to zero at a geometric rate as j → ∞.

From (6) it follows that the process yt itself has the representation

yt =
∞∑

j=−∞

Πjϵt−j, (11)

where Πj is the n× n coefficient matrix of zj in the Laurent series expansion of Π(z) ≡
Ψ(z−1)−1Φ(z)−1 that exists for 1 − δ2 < |z| < 1 + δ1 with Πj decaying to zero at a
geometric rate as j → ∞.

It is easy to see that the representation (11) can be obtained by multiplying both sides
of (10) by det(Φ(L))−1 or by multiplying both sides of (8) by Ψ(L−1)−1. Therefore, we
arrive at the following equivalence of MA(∞) representations:

yt = det(Φ(L))−1

∞∑
j=−(n−1)r

Njϵt+j = Ψ(L−1)−1

∞∑
j=0

Mjϵt−j =
+∞∑
−∞

Πjϵt−j. (12)

This equivalence shows the possibility of separating forward looking and backward looking
unilateral representations from bilateral representation (11).

Lanne and Saikkonen (2013) notice that the representation (11) implies that yt is a sta-
tionary and ergodic process with finite second moments. We adopt the notation VAR(r, s)
for the model defined by (5). In the causal case s = 0, the standard notation VAR(r) is
also adopted.

In the noncausal case (i.e., Πj ̸= 0 for some j < 0) the connection between the noncausal
VAR model and nonfundamentalness previously discussed is evidenced. In order to vi-
sualize greater implications of noncausality, consider the following illustration by Lanne
and Saikkonen (2013). Denote by Et[·] the conditional expectation operator with respect
to the information set {yt, yt−1, . . . } and, from (5) and (11), write

yt =
s−1∑
−∞

ΠjEt[ϵt−j] +
∞∑
j=s

Πjϵt−j. (13)

In the standard causal case, s = 0 and Et[ϵt−j] = 0 for j ≤ −1, so that the right-hand
side reduces to the moving average representation (8). However, in the noncausal case,
this does not happen. In this case, Πj ̸= 0 for some j < 0, which in conjunction with the
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representation (11) shows that yt and ϵt−j are correlated. Consequently, E[ϵt−j] ̸= 0 for
some j < 0, implying that future errors can be predicted by past values of the process yt.
This can be seen as an alternative characterization of nonfundamentalness.

In addition to the dependence on expected future errors, the process yt can also be
interpreted as being dependent on its expected future values. To visualize this, Lanne and
Saikkonen (2013) focus, for simplicity, on the purely noncausal model, where Φ(L) = In.
In this case, the model (5) can be written as:

yt = Ψ1yt+1 + · · ·+Ψsyt+s + ϵt, (14)

and, taking conditional expectations with respect to the information set {yt, yt−1, . . . },
one obtains:

yt = Ψ1Et[yt+1] + · · ·+ΨsEt[yt+s] + Et[ϵt]. (15)

This shows, according to Lanne and Saikkonen (2013), that the elements of the coefficient
matrix Ψj give the effect of the expectation of yt+j on yt. In the general case (Ψ(L) ̸= In),
we obtain a similar expression for yt with the exception that Et[ϵt] is replaced by Et[ut].

3.2 Gaussian Indistinguishability

A practical complication of noncausal models is that they cannot be distinguished from
standard causal models through second-order properties of Gaussian likelihoods. This
occurs because, assuming Gaussian errors, the spectral density of a VAR(r, s) model
specified according to equation (5) is given by

(2π)−1[Ψ(eiω)′Φ(e−iω)′C[ϵt]−1Φ(eiω)Ψ(e−iω)]−1, (16)

where C[·] denotes the covariance operator. In this expression, the matrix in the brackets
is 2π times the spectral density matrix of a second order stationary process whose auto-
covariances are equal to zero at lags greater than r+s. As is well known, this process has
an invertible MA representation of order r + s, implying that the same spectral density
can be obtained from a purely causal VAR(r + s) model specified as

Φ(L)Ψ(L)yt = ξt, (17)

where ξt is a vector of sequences of stationary innovations, uncorrelated, but, in general,
not independent, with zero mean and constant variance.

Specifically, by a slight modification of Theorem 10’ of Hannan (1970), Lanne and Saikko-
nen (2013) get the unique representation

Ψ(eiω)′Φ(e−iω)′C[ϵt]−1Φ(eiω)Ψ(e−iω) =

(
r+s∑
j=0

Cje−iω

)′( r+s∑
j=0

Cjeiω
)
, (18)
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where the n × n matrices C0, . . . , Cr+s are real with C0 positive definite, and the zeros
of det(

∑r+s
j=0 Cjeiω) lie outside the unit disc. Thus, the spectral density matrix of yt has

the representation (2π)−1(
∑r+s

j=0 Cjeijω)−1(
∑r+s

j=0 Cjeijω)′−1, which is the spectral density
matrix of a causal VAR(r + s) process.

The consequence of this equivalence of spectral densities is the impossibility of statistically
distinguishing causal processes VAR(r + s) from noncausal processes VAR(r, s) when yt
or, equivalently, the errors ϵt are Gaussian. In the Gaussian case, nothing is lost using
a standard causal representation. However, if errors are non-Gaussian, using a causal
representation for a truly noncausal process means using a VAR model whose errors can
only be guaranteed as uncorrelated, but not as independent. In this case, future errors
can be predicted by past values of the series considered and, as already discussed, this
engendres the problem of nonfundamentalness, implying that the errors of the estimated
causal VAR model do not represent fundamental economic shocks.

The primary conclusion of practical interest from the problem of Gaussian indistinguisha-
bility is that noncausal models must assume non-Gaussian errors to achieve identifica-
tion.12 A wide range of probability distributions satisfy this condition. Except for spe-
cific cases,13 the most reasonable and commonly used alternative in the literature is the
Student’s t-distribution. Accordingly, this distribution will serve as the default for all
exercises in the subsequent sections of this paper.

3.3 Model Selection and Estimation

The selection of orders r and s can be based on standard information criteria. The com-
mon approach was originally proposed by Breid et al. (1991), later reinforced by Lanne
and Saikkonen (2011), and followed by subsequent literature. It consists in comparing all
possible VAR(r, s) models that satisfy r + s = p with r, s ≥ 0, where p is the number of
lags selected for a VAR(r+ s) model by standard information criteria, and then choosing
the one with the largest likelihood value.14

Notice that by following this selection procedure, the possibility of selecting a causal
model is not ruled out beforehand. A VAR model with a sufficient number of lags and
leads covers both the possibility of causal and noncausal dynamics. Under fundamental-
ness, lead terms tend to become statistically insignificant and a standard purely causal
model tends to be selected. Consequently, the selection of a model with s > 0 and sta-
tistically significant lead coefficients may suggest the inadequacy of the standard purely
causal VAR model and its invertible MA representation to capture shocks underlying an
economy.

In this regard, some authors argue that the estimation of coefficients associated with
leads of variables can be viewed as a “test” for nonfundamentalness of data. However,
this interpretation has faced some criticism in the literature. The arbitrary choice of a

12Several studies consider non-Gaussian distributions for macroeconomic data. See, e.g., Fagiolo et al.
(2008), Cúrdia et al. (2014), Chib and Ramamurthy (2014), and Ascari et al. (2015).

13A relatively large literature on financial bubbles within the realm of noncausal models, for instance,
employs the Cauchy distribution due to its effectiveness in simulating explosive time series behavior.

14Since the VAR(p) model is known to adequately capture the autocorrelations of the time series data
and, due to the issue of indistinguishability, it is known that a noncausal VAR(r, s) model with r+ s = p
will share the same autocorrelation function, then it is reasonable to assume that the noncausal model
capturing the autocorrelations of the time series data is among those models where r + s = p.
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non-Gaussian distribution, which is required for the statistical identification of the non-
causal model, may undermine the diagnosis of noncausality for a given dataset, thereby
invalidating the selection of a noncausal model. For this procedure to be a reasonable
tool for diagnosing noncausality in a given dataset, it would be essential to ensure that
the non-Gaussian distribution chosen is indeed appropriate.

For this reason, alongside the model selection procedure described above, rigorous statis-
tical tests for noncausality or nonfundamentalness are desirable to provide a more robust
foundation for selecting a noncausal model. In this regard, fundamentalness tests were
proposed by Forni and Gambetti (2014) and by Canova and Sahneh (2018). Additionally,
Sahneh (2015) proposed tests for noncausality. Fortunately, the dataset considered for
the empirical applications of this paper has already been determined to be nonfundamen-
tal (Vonbun and Lima, 2020) using the tests proposed by Forni and Gambetti (2014) and
Canova and Sahneh (2018).

Finally, regarding estimation, noncausal VAR models can be estimated by either max-
imizing an approximate log-likelihood function, as proposed by Lanne and Saikkonen
(2013), or by employing Bayesian methods. In this paper, we adopt the approximate log-
likelihood approach. Further technical details on deriving the approximate log-likelihood
function and estimating the model can be found in Appendix A.

3.4 Forecasting

As previously discussed, the current state of the literature on noncausal autoregressive
models does not yet allow for the development of structural analyses, making the compu-
tation of impulse-response functions unfeasible. Nevertheless, the estimates derived from
these models still hold value. Thanks to the methodological advancements by Nyberg
and Saikkonen (2014), these models can be used to produce forecasts.

A key advantage of traditional (purely causal) autoregressive models in forecasting is
that their problems are linear. This property allows for the derivation of optimal linear
forecasts (in a mean-squared-error sense) using explicit, closed-form solutions. For non-
causal models, in contrast, the problem is nonlinear—as highlighted in the literature by
Rosenblatt (2000), and Lanne et al. (2012). This significantly complicates forecast con-
struction, as computing them generally requires simulation-based methods. Nonetheless,
Nyberg and Saikkonen (2014) developed a method to address this problem.

Nyberg and Saikkonen’s (2014) approach begins with equation (10) and involves approx-
imating the infinite sum it contains with a finite sum. Using equations (21) and (10),
they propose approximating ET [yT+h] as

ET [yT+h] ≈ a1ET [yT+h−1] + · · ·+ anrET [yT+h−nr] + ET

 M−h∑
j=−(n−1)r

NjϵT+h+j

 , (19)

where M > 0 is a sufficiently large number to make approximation errors negligible. Since
ET [yT+h−j] = yT+h−j for j ≥ h, approximate predictions can be computed recursively
starting from h = 1 if the conditional expectation of the last term on the right-hand side
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of (19) is computed for every h ≥ 1. Therefore, the problem reduces to computing an
approximation for this last term.

Nyberg and Saikkonen’s (2014) idea is to approximate this term using simulations. A key
difference between the multivariate and univariate cases is that, in the latter (as consid-
ered in Lanne, Luoto, and Saikkonen, 2012), this conditional expectation depends only
on the errors ϵT+1, . . . , ϵT+M . However, except for the purely noncausal case r = 0, this is
not true for the multivariate case. In the multivariate case, the errors ϵT+1−(n−1)r, . . . , ϵT
are also involved, and ϵT−s+1, . . . , ϵT , for s > 0, cannot be expressed as functions of
the observed data (Nyberg and Saikkonen, 2014). Fortunately, in the purely noncausal
case—the relevant case for our empirical application—these errors disappear from the
right-hand side of the equation (19), simplifying the situation and allowing the solution
to be a direct extension of the method proposed by Lanne et al. (2012) for the univariate
case. The general case, however, still requires a more nuanced approach. The details
of these treatments are beyond the scope of this work but can be found in Nyberg and
Saikkonen (2014).15

A final comment is in order. The construction of forecasts depends on specifying the trun-
cation parameter M and the number of replications N for the Monte Carlo simulations
used to approximate conditional expectations. Lanne et al. (2012) provide simulation
evidence that even with relatively small values for the truncation parameter M and the
number of replications N , the approximation in equation (19) remains accurate. Based
on these simulations, they recommend M = 50 and N = 10, 000 as reasonable values
for these quantities. For the empirical applications in this paper, we adopt M = 50
as recommended by the existing literature; for robustness, however, we consider several
alternative values for N .

4 Empirical Application

4.1 Data and Model Selection

The dataset we consider is the same as that used by Vonbun and Lima (2020) to test
for the occurrence of nonfundamentalness in Brazilian fiscal data. The time series are
quarterly, covering the period from the first quarter of 1996 to the first quarter of 2017.
This fiscal dataset was organized by Orair et al. (2016),16 who consolidated the country’s
public finances and correctly classified them into government investment, IG, government
spending, G, and net tax burden, T . Additionally, we included real GDP at 1995 constant
prices, Y , calculated by the Brazilian Institute of Geography and Statistics (IBGE) and
obtained from its website.

All series are considered in real terms, seasonally adjusted using ARIMA-X13, and log-
arithmically transformed. The Augmented Dickey-Fuller (ADF) test was performed on
all series, and the null hypothesis of a unit root could not be rejected for any of them.
Given the substantial evidence that these variables may cointegrate, we conducted a

15Technical details on the methodological treatment of forecasting for the purely noncausal case—the
relevant case for this work—can be found on page 8, Section 3.1 of Nyberg and Saikkonen (2014). Details
on the general case can also be found on page 10, Section 3.2.

16Subsequently updated until 2017 by the public finance team of the Institute for Applied Economic
Research’s (IPEA) Directorate of Macroeconomic Studies and Policies (DIMAC).
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Figure 1: Time series used in modeling.

(a) Real GDP (at 1995 constant prices, log-
differentiated), ∆ln(Y ).

(b) Real Public Investment (log-differentiated),
∆ln(IG).

(c) Real Government Spending (log-
differentiated), ∆ln(G).

(d) Real Net Tax Burden (log-differentiated),
∆ln(T ).

cointegration test. The results of the test are reported in Appendix B.1. For all relevant
specifications, the test rejected cointegration. Therefore, all variables were differentiated
to ensure stationarity. We also demeaned all variables.17 Figure 1 displays the resulting
time series used in our modeling.

Following the model selection procedure described in Section 3.3, a standard purely causal
VAR model was estimated, and the optimal lag order p = 1 was chosen based on the
Schwarz (SC) and Hannan-Quinn (HQ) information criteria. The results of the informa-
tion criteria are reported in Appendix B.2. The normality of the residuals of the VAR(1)
model was then tested using the Jarque-Bera test, which indicated signs of non-normality,
justifying the use of non-Gaussian distributions for modeling. The results of the Jarque-
Bera test are reported in Appendix B.4. Consistent with the literature, we chose the
Student’s t-distribution.

With the information criteria selecting p = 1, the only feasible noncausal specification
respecting r + s = 1 was a VAR(0,1) with zero lags and one lead. The selection prob-

17The variables were prudently demeaned, as the implications of stochastic trends in noncausal models
are still not fully understood.
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lem was then reduced to choosing between a purely causal VAR(1,0) and a noncausal
VAR(0,1). Since the dataset we considered was already previously verified as nonfunda-
mental by Vonbun and Lima (2020), we selected the noncausal VAR(0,1) model, avoiding
the need for log-likelihood comparisons. This selection approach relied on more rigorous
statistical tests (Forni and Gambetti, 2014; Canova and Sahneh, 2018) compared to a
simple log-likelihood comparison, which helps address the criticism discussed in Section
3.3. However, it is only feasible when there is only one possible noncausal model speci-
fication (i.e., when p = 1). For cases where p > 1, selecting the noncausal specification
among multiple options would still require comparing the log-likelihoods of each model.

4.2 Estimation

The results of the estimated VAR(0,1) model are presented in Table 1. The parameter
estimates of Ψ1 do not appear to reject the presence of noncausality in Brazilian fiscal
data. All four future variables showed a statistically significant coefficient in at least one
of the system’s reduced-form equations. Unfortunately, due to the inability to properly
identify shocks, it is not feasible to isolate and quantify the effects of future variables
on specific current variables. However, it is still possible to infer that the significance of
these coefficients suggests the relevance of these future variables in the overall dynamics
of the model, thus providing potential evidence for the occurrence of fiscal foresight,
noncausality, and nonfundamentalness within the typical Brazilian fiscal VAR dataset.

Table 1: Estimation results for the fiscal VAR(0,1): GDP, Y , Government Investment,
IG, Government Spending, G, and Net Tax Burden, T .

Ψ1

0.2264 0.0123 -0.1745* 0.083*

Σ

0.9285* 2.7604* 0.1399 1.7486*
(0.1225) (0.0124) (0.0463) (0.023) (0.1759) (1.1066) (0.1495) (0.5933)
-0.1276 0.2802* -0.1575 0.141 2.7604* 80.1325* 0.7769 -1.2667
(1.0953) (0.112) (0.4097) (0.2024) (1.1066) (15.0369) (1.367) (4.8483)
0.2217 0.0118 -0.2378* 0.0195 0.1399 0.7769 1.6033* 0.6746

(0.1521) (0.0157) (0.0624) (0.0292) (0.1495) (1.367) (0.3415) (0.6882)
1.409* -0.0028 -0.354 -0.2703 1.7486* -1.2667 0.6746 20.1141*

(0.5635) (0.0589) (0.2051) (0.1059) (0.5933) (4.8483) (0.6882) (3.7312)

λ 5.5482* logL -836.084
(1.5373)

Note: The values in parentheses are the standard errors based on the Hessian of the log-
likelihood function. Asterisks indicate statistical significance at 5%. Ψ1 is the coefficient
matrix of the variables one period ahead. Σ is the variance-covariance matrix. λ is the
parameter of degrees of freedom for the multivariate t distribution. logL is the value of the
log-likelihood function.

The following reduced-form coefficients were statistically significant: government expen-
diture one quarter ahead on current GDP (Ψ1,13) and current government expenditure
(Ψ1,33); net tax burden one quarter ahead on current GDP (Ψ1,14) and current net tax
burden (Ψ1,44); government investment one quarter ahead on current government invest-
ment (Ψ1,22); and GDP one quarter ahead on current net tax burden (Ψ1,41).18

18It is important to emphasize that these relationships do not indicate inter-causal economic effects
between the variables. To make interpretations of this nature, identification and structural analysis
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4.3 Forecasts

In this section, we evaluate whether a correctly specified noncausal model can provide
predictive gains over a standard misspecified purely causal model by computing forecasts
and comparing the predictive performance of the selected noncausal VAR(0,1) model with
that of the standard purely causal VAR(1) model. To this end, we compute pseudo out-
of-sample forecasts for four quarters ahead, covering the period from the second quarter
of 2017 to the first quarter of 2018.19

The predictive accuracy metrics used in the comparison are the Mean Squared Forecast
Error (MSFE), the Root Mean Squared Forecast Error (RMSFE), the Mean Absolute
Forecast Error (MAFE), and the Mean Average Percentage Error (MAPE). For robust-
ness, we construct forecasts using varying numbers of replications, N , enabling an analysis
of how predictive accuracy evolves as both the forecast horizons extend and the number
of replications increases. Across all metrics, the forecasting errors remained stable as the
number of replications increased from 10,000 to 500,000.

The relative predictive accuracy metrics (calculated as the ratio of the predictive accuracy
metrics for the noncausal and causal VAR models) are presented in Table 2. Values
below unity indicate the predictive superiority of the noncausal model over its causal
counterpart. Generally, the VAR(0,1) model exhibited consistently smaller errors than
the VAR(1) model across the various setups considered, including differing numbers of
replications and forecast horizons.

Exceptions were observed in five cases, specifically with a low number of replications
and a long forecast horizon (10,000 or 100,000 replications and a four-quarter horizon).
However, increasing the number of replications to 200,000 or more led to better forecasts
for the VAR(0,1) model across all horizons and cases considered. These results underscore
the predictive superiority of the noncausal VAR(0,1) model over the standard purely
causal VAR(1) model in nearly all scenarios. Of the 64 relative metrics calculated, 59
favored the noncausal VAR model. Strikingly, in no instance did simulations with 200,000
or more replications produce worse predictions than those of the VAR(1).

The predictive superiority of the noncausal VAR is illustrated in Figures 2-5. These
figures present bar charts showing the predictive accuracy metrics for each model and
forecast horizon. Each figure corresponds to a specific forecast horizon and predictive
accuracy metric, displaying the metrics for the noncausal VAR across different numbers
of replications, N . The final bar in each chart, positioned on the far right, represents the
metric for the standard purely causal VAR(1). Bars shorter than this final bar indicate
the superiority of the noncausal VAR(0,1) for the corresponding horizon and metric. To
aid comparisons, dashed lines are included at the level of the VAR(1) metric.

In general, noncausal VAR forecasts are markedly superior for short horizons, especially

methods would be necessary, which are not yet readily available in the noncausal VAR literature. The
only interpretation that can be drawn from these coefficients is a purely statistical one: they represent
the effects that each variable will have on the predictions made by the model for the other variables (see
equation 15). This interpretation is adopted, for instance, in Lanne and Saikkonen (2013). However,
from a causality perspective, the magnitudes of these coefficients are meaningless.

19This forecast window was selected to exclude data from the second quarter of 2018, which was affected
by the Truck Drivers’ Strike. Forecasts generated for intervals including this period exhibited significant
distortions due to entirely exogenous factors. Consequently, we chose to discard those forecasts and focus
on periods of greater stability to ensure more reliable statistical comparisons.
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Table 2: Relative predictive accuracy metrics.

Relative MSFE

Horizon
VAR(0,1)/VAR(1)

Number of replications
10000 100000 200000 500000

1 0.3695 0.3349 0.4030 0.4177
2 0.8040 0.8371 0.9271 0.9461
3 0.7691 0.9761 0.9135 0.9291
4 1.0184 1.0223 0.9353 0.9205

Relative RMSFE

Horizon
VAR(0,1)/VAR(1)

Number of replications
10000 100000 200000 500000

1 0.6079 0.5787 0.6349 0.6463
2 0.8967 0.9149 0.9629 0.9727
3 0.8770 0.9880 0.9558 0.9639
4 1.0092 1.0111 0.9671 0.9594

Relative MAFE

Horizon
VAR(0,1)/VAR(1)

Number of replications
10000 100000 200000 500000

1 0.6079 0.5787 0.6349 0.6463
2 0.8452 0.8596 0.8945 0.9056
3 0.8413 0.9452 0.8999 0.9118
4 0.9831 0.9874 0.9301 0.9055

Relative MAPE

Horizon
VAR(0,1)/VAR(1)

Number of replications
10000 100000 200000 500000

1 0.6079 0.5787 0.6349 0.6463
2 0.8921 0.9095 0.9541 0.9645
3 0.8614 0.9823 0.9434 0.9558
4 0.9936 1.0069 0.9637 0.9515
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Figure 2: VAR(0,1) and VAR(1) — Mean Squared Forecast Errors (MSFE).

(a) h = 1 (b) h = 2

(c) h = 3 (d) h = 4

for h = 1 (one quarter ahead). For longer horizons (h = 2 or more), however, the
predictive accuracy of the causal and noncausal models seems to converge. For horizons
of two, three, and four quarters ahead, the Diebold-Mariano test shows no statistical
evidence that the predictions of the causal and noncausal models differ. The results of
the Diebold-Mariano test are detailed in Appendix B.3. Unfortunately, for the horizon
that appeared particularly promising based on graphical inspection—one quarter ahead
(h = 1)—the test cannot be conducted. Thus, for this horizon, we must rely on the
qualitative graphical assessment previously described.

In summary, the overall evidence indicates the predictive superiority of noncausal VAR
models over standard purely causal VAR models—particularly for shorter horizons—when
examining the dataset and the analyzed period. This empirical evidence highlights, once
again, the importance of addressing the issue of nonfundamentalness (and noncausality)
in fiscal VAR models.
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Figure 3: VAR(0,1) and VAR(1) Root — Mean Squared Forecast Errors (RMSFE).

(a) h = 1 (b) h = 2

(c) h = 3 (d) h = 4
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Figure 4: VAR(0,1) and VAR(1) — Mean Absolute Forecast Errors (MAFE).

(a) h = 1 (b) h = 2

(c) h = 3 (d) h = 4
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Figure 5: VAR(0,1) and VAR(1) — Mean Absolute Percentage Errors (MAPE).

(a) h = 1 (b) h = 2

(c) h = 3 (d) h = 4
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5 Conclusion
In this paper, we presented an application of Lanne and Saikkonen’s (2013) noncausal
VAR model to the “typical” dataset used in the Brazilian fiscal VAR literature, which
Vonbun and Lima (2020) previously found to be nonfundamental. Nonfundamental-
ness—often arising in fiscal data due to fiscal foresight—leads to standard fiscal VAR
models being misspecified, resulting in biased and inconsistent forecasts. Noncausal VAR
models address this issue by allowing the model dynamics to depend not only on past
and current values of the variables but also on their future values, thereby potentially
correcting for misspecification.

We implemented a model selection procedure similar to that proposed by Lanne and
Saikkonen (2013). The selected model was a purely forward-looking noncausal model
with one lead—meaning it depended only on the current values of the variables and their
expectations one quarter ahead. This model was estimated, and all future variables were
found to be statistically significant in determining the dynamics of at least one of the
system’s equations. We then compared the predictive performance of this noncausal fiscal
VAR to that of its purely causal counterpart.

The results were favorable to the predictive ability of the noncausal VAR model, particu-
larly for larger numbers of replications and shorter horizons. Only in five instances—with
a low number of replications and a long forecast horizon—did the noncausal model per-
form worse than the standard purely causal. As the number of replications increased, the
noncausal specification consistently outperformed the causal specification. This superior
performance was especially pronounced for the shortest forecast horizon (one quarter
ahead, h = 1). For horizons of two quarters or more (h ≥ 2), however, the predictive
performance of the two models appeared to converge, with the Diebold-Mariano test
indicating no statistically significant differences in their predictive accuracies.

The statistical significance of the estimated coefficients and the predictive superiority of
the forecasts provided additional evidence of fiscal foresight and noncausality as sources
of nonfundamentalness in the Brazilian fiscal dataset analyzed, partially corroborating
the results of Vonbun and Lima (2020). This evidence underscores the importance of
accounting for these phenomena in Brazilian fiscal data, which are particularly prone to
such issues. Although these phenomena have been widely recognized as challenges in the
fiscal literature, they have so far been overlooked in the Brazilian VAR fiscal literature.

While nonfundamentalness and noncausality can be addressed through methods other
than employing a noncausal VAR, the approach presented in this paper appears to be
the first to achieve some degree of success. A natural alternative is to enhance the infor-
mational sufficiency of purely causal models by incorporating proxies for forward-looking
variables. This approach was previously attempted by Vonbun and Lima (2020), but
unfortunately, it proved unsuccessful. Consequently, the noncausal VAR model emerges
as a promising alternative for addressing these issues in Brazilian fiscal studies.

Suggestions for future research include applying noncausal models to different economic
contexts where nonfundamentalness is present. Additionally, significant improvements in
empirical studies can be achieved with advances in techniques for identifying noncausal
VAR models. More ambitious projects could involve developing and applying techniques
for identification and structural analysis to these models, enabling the construction of
impulse response functions and the analysis of foresight-robust fiscal multipliers.
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Appendix

A The Log-likelihood Function and Estimation
To carry out the estimation, the first step is to derive the transformation representative
of the equivalence relationship between the process’ information sets. For this, Lanne
and Saikkonen (2013) use the definition wt = det(Φ(L))yt from (9). In this definition,
detΦ(L) is a polynomial. Denoting this polynomial as

a(z) ≡ det(Φ(z)) = 1− a1z − · · · − anrz
nr, (20)

it is possible to write

wt = a(L)yt. (21)

Using this process together with the equation ut = Ψ(L−1)yt from (7), Lanne and Saikko-
nen (2013) obtain:



u1
...

uT−s

wT−s+1
...
wT


=



y1 −Ψ1y2 − · · · −Ψsys+1
...

yT−s −Ψ1yT−s+1 − · · · −ΨsyT
nT − s+ 1− a1yT−s − · · · − anryT−s−nr+1

...
yT − a1yT−1 − · · · − anryT−nr


= H1



y1
...

yT−s

yT−s+1
...
yT


, (22)

or simply x1 = H1y.

From the definition of ut and (5) it follows that Φ(L)ut = ϵt so that, from the above
equality, the authors obtain:



u1
...
ur

ϵr+1
...

ϵT−s

wT−s+1
...
wT


=



u1
...
ur

ur+1 − Φ1ur − · · · − Φru1
...

uT−s − Φ1uT−s−1 − · · · − ΦruT−s−r

wT−s+1
...
wT


= H2



u1
...
ur

ur+1
...

uT−s

wT−s+1
...
wT


, (23)

or x2 = H2x1.

Lanne and Saikkonen (2013) also perform a third transformation that transforms the
variables wT−s+1, . . . , wT into x2. For this purpose, they define:

24



vk,T−s+k = wT−s+k −
−k∑

j=−(n−1)r

NjϵT−s+k+j, k = 1, . . . , s, (24)

where the sum is interpreted as zero when k > (n − 1)r, that is, when the lower bound
exceeds the upper bound. Note also that, from (5) and (10), vk,T−s+k can be expressed
as a function of the observed data y1, . . . , yT and that the representation vk,T−s+k =∑∞

j=−k+1NjϵT−s+k+j holds, which shows that vk,T−s+k (k = 1, . . . , s) are independent of
ϵt, t ≤ T − s. It is now possible to introduce the following transformation:



u1
...
ur

ϵr+1
...

ϵT−s

v1,T−s+1
...

vs,T


=



u1
...
ur

ϵr+1
...

ϵT−s

wT−s+1 −N−(n−1)rϵT−s+1−(n−1)r − · · · −N−1ϵT−s
...

wT −N−(n−1)rϵT−(n−1)r − · · · −N−sϵT−s


= H3



u1
...
ur

ϵr+1
...

ϵT−s

wT−s+1
...
wt


,

(25)

or z = H3x2.

Combining the three transformations, the authors obtain the equation:

z = H3H2H1y, (26)

where the nonstochastic matrices H1, H2 and H3 are nonsingular. The nonsingularity
of H2 and H3 comes from the fact that det(H2) = det(H3) = 1, which can be easily
verified. The demonstration of the nonsingularity of H1 is a more complicated task and
can be found in Lanne and Saikkonen (2013).

Here we will observe once more the usefulness of the equivalent MA(∞) representa-
tions, exposed in the equation (12). From the equations (8) and (10), it can be seen
that the components of z given by z1 = (u1, . . . , ur), z2 = (ϵr+1, . . . , ϵT−s) and z3 =
(v1,T−s+1, . . . , vs,T ) are independent. Therefore, under true parameter values, the joint
probability density function of z can be expressed as:

hz1(z1)

(
T−s∏
t=r+1

fΣ(ϵt;λ)

)
hz3(z3), (27)

where hz1(·) and hz3(·) stand for the probability density functions of z1 and z3, respec-
tively. Using the general specification (5) of the VAR(r, s) models and the fact that the
determinants of H2 and H3 are equal to one, we can write the joint probability density
function of the data vector y as:
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hz1(z1(ϑ))

(
T−s∏
t=r+1

fΣ(Φ(L)Ψ(L−1)yt;λ)

)
hz3(z3(ϑ))|det(H1)|, (28)

where the argument z1(ϑ) is defined by replacing ut in the definition of z1 by Ψ(L−1)yt
(t = 1, . . . , r) and z3(ϑ) is defined similarly by replacing vk,T−s+k in the definition of z3
by an analogue with a(L)yT−s+k and Φ(L)Ψ(L−1)yT−s+k+j used in place of wT−s+k and
ϵT−s+k+j (j = −(n− 1)r, . . . ,−k, k = 1, . . . , s), respectively.

Lanne and Saikkonen (2013) note that the determinant of the block (T−s)n×(T−s)n in
the upper left corner of H1 is equal to one and, therefore, using the well-known formula
for the determinant of partitioned matrices, it is possible to see that the determinant
of H1 is independent of the size T of the sample. As a consequence of this result, the
approximation of the joint density of y reduces to the problem of approximating only
the second term of the previous expression. The approximate log-likelihood function can
then be described as:

lT =
T−s∑
t=r+1

gt(θ) =
T−s∑
t=r+1

logf(ϵt(ϑ)′Σ−1ϵt(ϑ);λ)−
1

2
log det(Σ) (29)

where

ϵt(ϑ) = ut(ϑ2)−
r∑

j=1

Φj(ϑ1)ut−j(ϑ2) (30)

and

ut(ϑ2) = yt −Ψ1(ϑ2)yt+1 − · · · −Ψs(ϑ2)yt+s. (31)

Maximizing lT (θ) for the permissible values of θ yields an approximate maximum likeli-
hood estimator for θ.
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B Statistical Tests

B.1 Cointegration Test

Table 3: Johansen Cointegration Test for Y , IG, G and T .

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data trend: None None Linear Linear Quadratic

Test Type No Intercept,
No Trend

Intercept,
No Trend

Intercept,
No Trend

Intercept,
Trend

Intercept,
Trend

Trace 2 3 2 2 4
Max-Eig 1 1 1 1 1

*Critical values based on MacKinnon-Haug-Michelis (1999).

Information Criteria by Rank and Model

Data Trend: None None Linear Linear Quadratic

Rank or
No. of CEs

No Intercept
No Trend

Intercept,
No Trend

Intercept,
No Trend

Intercept,
Trend

Intercept,
Trend

Log-Likelihood by Rank (rows) and Model (columns)
0 -2999.429 -2999.429 -2992.832 -2992.832 -2992.620
1 -2986.109 -2981.939 -2978.072 -2975.271 -2975.060
2 -2977.552 -2972.886 -2969.093 -2963.908 -2963.713
3 -2972.169 -2965.827 -2962.853 -2955.224 -2955.142
4 -2972.004 -2962.691 -2962.691 -2951.685 -2951.685

Akaike Information Criteria by Rank (rows) and Model (columns)
0 71.32774 71.32774 71.26663 71.26663 71.35576
1 71.20257 71.12798 71.10758 71.06519 71.13083
2 71.18945 71.12673 71.08454 71.00961* 71.05206
3 71.25104 71.17239 71.12594 71.01704 71.03863
4 71.43538 71.31038 71.31038 71.14553 71.14553

Schwarz Criteria by Rank (rows) and Model (columns)
0 72.24732* 72.24732* 72.30116 72.30116 72.50524
1 72.35205 72.30620 72.37201 72.35836 72.51021
2 72.56883 72.56359 72.57887 72.56141 72.66134
3 72.86031 72.86788 72.85017 72.82748 72.87780
4 73.27455 73.26450 73.26450 73.21460 73.21460

Note: Lags interval of 1 to 2.
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B.2 Information Criteria

Table 4: Information Criteria Results.

Lags LR FPE AIC SC HQ

0 - 1.76 ·1029 78.69 78.81 78.74
1 651.26 4.44 ·1025 70.40 71.00* 70.65*
2 36.17 4.00 ·1025 70.30 71.37 70.73
3 29.69 3.86 ·1025 70.25 71.80 70.87
4 20.93 4.19 ·1025 70.32 72.35 71.14
5 34.43* 3.57 ·1025 70.14 72.64 71.14

Note: Asterisks (*) indicate the lag order selected by the criterion. LR: Sequential Modified
LR Test Statistic (each test at the 5% level). FPE: Final Prediction Error. AIC: Akaike
Information Criterion. SC: Schwarz Information Criterion. HQ: Hannan-Quinn Information
Criterion.

B.3 Diebold-Mariano Test

Table 5: D-M test p-values.

Horizon Test Specification Number of replications (N)
10k 100k 200k 500k

2
Less 0.7887 0.7562 0.6711 0.6557

Greater 0.2113 0.2438 0.3289 0.3443
Two Sided 0.4226 0.4875 0.6579 0.6886

3
Less 0.8237 0.663 0.7293 0.7276

Greater 0.1763 0.337 0.2707 0.2724
Two Sided 0.3527 0.674 0.5414 0.5448

4
Less 0.5356 0.5381 0.7273 0.7799

Greater 0.4644 0.4619 0.2727 0.2201
Two Sided 0.9289 0.9238 0.5454 0.4402

Note: The null hypothesis H0 is that the two methods have the same forecast ac-
curacy. For the “Less” test specification, the alternative hypothesis H1 is that the
noncausal VAR(0,1) is less accurate than the standard purely causal VAR(1,0). For
the “Greater ” test specification, in turn, the alternative hypothesis H1 is that the
noncausal VAR(0,1) is more accurate than the standard purely causal VAR(1,0). Fi-
nally, for the “Two Sided ” test specification, the alternative hypothesis H1 is that the
noncausal VAR(0,1) and the standard purely causal VAR(1,0) have different levels of
accuracy. All tests consider a 5% statistical significance level.
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B.4 VAR Residual Normality Test

Table 6: VAR Residual Normality Test.

Component Skewness Chi-squared df Prob.

1 -2.316679 77.82155 1 0.0000
2 -0.138122 0.276628 1 0.5989
3 0.080499 0.093962 1 0.7592
4 -0.986608 14.11425 1 0.0002

Joint 92.30639 4 0.0000

Component Kurtosis Chi-squared df Prob.

1 16.08080 620.2643 1 0.0000
2 3.834746 2.525903 1 0.1120
3 4.255636 5.715255 1 0.0168
4 4.798800 11.72934 1 0.0006

Joint 640.2348 4 0.0000

Component Jarque-Bera df Prob.

1 698.0859 2 0.0000
2 2.802530 2 0.2463
3 5.809218 2 0.0548
4 25.84359 2 0.0000

Joint 732.5412 8 0.0000

Note: Orthogonalization: Cholesky (Lütkepohl). H0: Residuals are multivariate normal.

29


