
Statistics II Problem Set 1
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli July 27, 2023

1. Show that V [Y ] = EX [V [Y |X]] + VX [E[Y |X]].

Solution. This is the Law of Total Variance. In what follows, the X subscript indicates that
the expectation (or variance) operation is being taken with respect to the random variableX.
When there is no subscript, the expected value is taken with respect to the joint distribution
of X and Y .1

V [Y ] = E[(Y − E[Y ])2] = EX [E[(Y − E[Y |X] + E[Y |X]− E[Y ])2|X]]

= EX [E[(Y − E[Y |X])2|X] + 2E[(Y − E[Y |X])(E[Y |X]− E[Y ])|X] + E[(E[Y |X]− E[Y ])2|X]]

= VX [E[Y |X]] + 2EX [E[(Y − E[Y |X])(E[Y |X]− E[Y ])|X]] + EX [V [Y |X]]

= VX [E[Y |X]] + 2EX [(E[Y |X]− E[Y ])E[(Y − E[Y |X])|X]︸ ︷︷ ︸
0

] + EX [V [Y |X]]

= VX [E[Y |X]] + EX [V [Y |X]].

Alternatively,

EX [V [Y |X]] + VX [E[Y |X]] = EX [EX [Y
2|X]− EX [Y |X]2] + EX [EX [Y |X]2]− EX [EX [Y |X]]2

= EX [EX [Y
2|X]]− EX [EX [Y |X]2] + EX [EX [Y |X]2]− EX [EX [Y |X]]2

= EX [EX [Y
2|X]]− EX [EX [Y |X]]2

(L.I.E.) = EX [Y
2]− EX [Y ]2 = V [Y ].

2. [7.1, LNs] Let Xi be i.i.d. random variables with E[Xi] = µ and V [Xi] = σ2.

(a) Explain why X̄N = N−1
∑N

i=1Xi converges in probability.

Solution. Since E[X̄N ] = µ < ∞, the weak law of large numbers applies. Thus X̄N
p−→ µ.

If you consider it cheating to use the law of large numbers here, then take Chebyshev’s
inequality and note that, for any ε > 0,

0 ≤ P (|X̄ − µ| ≥ ε) ≤ σ2/N

ε2
→ 0

as N → ∞. Thus by definition of convergence in probability X̄
p−→ µ.

1That is, EX [g(X,Y )] =
∫∞
−∞ g(x, y)fX(x) dx and E[g(X,Y )] =

∫∞
−∞

∫∞
−∞ g(x, y)fXY (x, y) dx dy.
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(b) Let ZN = N1/2(X̄N −µ)/σ. Explain why (ZN)
2 converges in distribution to a chi-square

with one degree of freedom.

Solution. Write Zn = σ−1
√
N(X̄N − µ). Since E[X] = µ and E[X2] = V [X] + E[X]2 =

σ2 + µ2 < ∞, the central limit theorem applies and we have
√
N(X̄N − µ)

d−→ N(0, 1). By

Slutsky’s theorem, it follows that Zn
d−→ σ−1N(0, σ2) = N(0, 1). Therefore, by continuity of

the square function and the continuous mapping theorem Z2
n

d−→ Z2, where Z ∼ N(0, 1). The
result follows from the well-known fact that the square of a standard normally distributed
random variable is chi-squared distributed with one degree of freedom; i.e., Z2 ∼ χ2

1.

(c) Let WN = N−1
∑N

i=1X
2
i . Explain why WN converges in distribution, and find its limiting

distribution.

Solution. As shown in (b), E[X2
i ] = σ2 + µ2 < ∞. Moreover, since {Xi}Ni=1 are i.i.d.,

then so are {X2
i }Ni=1.

2 Therefore, the strong law of large numbers applies and we have
WN = N−1

∑N
i=1X

2
i

a.s.−−→ σ2 + µ2. Since almost surely convergence implies convergence

in distribution, it follows that WN
d−→ σ2 + µ2. That is, WN converges to a degenerate

distribution: the point σ2 + µ2.

3. [7.4, LNs] Let Zi = (Xi, Yi) be i.i.d. random vectors where

E[Zi] =

[
µX

µY

]
and V [Zi] =

[
σXX σXY

σXY σY Y

]
.

Assume for now that µY ̸= 0.

(a) Find the asymptotic distribution of
√
n
(

X̄n

Ȳn
− µX

µY

)
using the multivariate delta method.

Solution. Define g : R × R\{0} → R as g(x, y) = x/y. Clearly g is twice continuously
differentiable in µ = (µX , µY ), with gradient ∇g(µX , µY ) = (1/µY ,−µX/µ

2
Y )

′. Since

√
n

([
X̄n

Ȳn

]
−
[
µX

µY

])
d−→ N

(
0,

[
σXX σXY

σXY σY Y

])
,

it follows from the multivariate delta method that

√
n
(
g(X̄, Ȳ )− g(µX , µY )

) d−→ ∇g(µX , µY )
′N

(
0,

[
σXX σXY

σXY σY Y

])
.

That is,

2If Xi, i = 1, . . . , N , are i.i.d., then so are hi(Xi), for any measurable functions hi, i = 1, . . . , N .
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√
n

(
X̄n

Ȳn

− µX

µY

)
d−→ N

(
0,
[
1/µY −µX/µ

2
Y

] [σXX σXY

σXY σY Y

] [
1/µY

−µX/µ
2
Y

])
= N

(
0,

1

µ4
Y

(
σXXµ

2
Y − 2µXµY σXY + σY Y µ

2
X

))
.

(b) Find the asymptotic distribution of
√
n
(

X̄n

µY
− µX

µY

)
=

√
n
(

X̄n−µX

µY

)
.

Solution. Write the above expression as µ−1
Y

√
n(X̄n − µX). By the central limit theorem,

√
n(X̄n − µX)

d−→ N(0, σXX). Therefore, by Slutsky’s theorem,

√
n

(
X̄n

µY

− µX

µY

)
= µ−1

Y

√
n(X̄n − µX)

d−→ µ−1
Y N(0, σ2) = N(0, µ−2

Y σXX).

(c) Why are the answers for items (a) and (b) in general different? Explain why they are
the same when µX = 0.

Solution. In (b) we replaced the sample mean Ȳn, which is a consistent estimator for the
population mean, by the population mean itself. Ȳn, being an estimator, possesses some vari-

ance that influences the asymptotic variance of
√
n
(

X̄n

Ȳn
− µX

µY

)
. When replaced by the true

parameter µY , all such variance vanishes and we obtain the asymptotic variance observed
in (b). Notice that if we set σXY = σY Y = 0 in (a) we obtain the asymptotic variance of (b).

When µX = 0 the asymptotic variance of
√
n
(

X̄n

Ȳn
− µX

µY

)
does not depend on σXY and σY Y ,

so the variance reduction obtained by replacing Ȳn by µY does not influence the asymptotic
variance anymore and the asymptotic variances obtained in (a) and (b) become equivalent.

The independence of the asymptotic variance of
√
n
(

X̄n

Ȳn
− µX

µY

)
with respect to σXY and

σY Y when µX = 0 reflects the fact that ȲN interacts scalarly with X̄n. The intuition is that
as n → ∞, X̄n converges in probability to zero, making the “scalar effects” of Ȳn on X̄n

disappear.

(d)What happens with
√
nX̄n/Ȳn when µX = µY = 0? How about the asymptotic distribution

of X̄n/Ȳn? Explain your answer.

Solution. The function g defined in (a) is not continuously differentiable at (µX , µY ) = (0, 0).
Therefore we cannot apply the (multivariate) delta method. Regarding the asymptotic
distribution of X̄n/Ȳn, when (µX , µY ) = (0, 0), by the central limit theorem we have that

√
nX̄n

d−→ N(0, σXX) and
√
nȲn

d−→ N(0, σY Y ).
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Using the same g as defined in (a), which is clearly continuous almost everywhere, by the
continuous mapping theorem we have

g(
√
nX̄n,

√
nȲn) =

√
nX̄n√
nȲn

=
X̄n

Ȳn

d−→ ZX

ZY

,

where ZX ∼ N(0, σXX) and ZY ∼ N(0, σY Y ).

What is the distribution of ZX/ZY ? It turns out that it is a Cauchy distribution. The
Cauchy distribution does not have finite moments of order greater than or equal to one
(only fractional absolute moments exist) and has no moment generating function!

4. Prove Result 10.3 from the lecture notes.

Solution. See lecture notes, p. 62.

5. [12.1, LNs] Suppose that X1, . . . , Xn are i.i.d., each uniformly distributed on [0, θ].

(a) Find the asymptotic distribution of n1/2(θ−Un), where Un = 2(X1 + · · ·+Xn)/n. Hint:
find the mean and variance of Xi.

Solution. Notice that

n1/2(θ − Un) = n1/2

(
θ − 2

n

n∑
i=1

Xi

)
= −2n1/2

(
X̄ − θ

2

)
.

Since E[Xi] =
θ
2
and E[X2

i ] = V [Xi] + E[Xi]
2 = θ2

12
+ θ2

4
< ∞, CLT applies. Therefore

n1/2(θ − Un)
d−→ −2N

(
0,

θ2

12

)
= N

(
0,

θ2

3

)
,

by the central limit theorem, together with Slutsky’s theorem.

(b) Find the (minimally) sufficient statistic for θ.

Solution. The joint density of X ≡ X1, . . . , Xn is fX(X; θ) =
∏n

i=1
1
θ
= 1

θn
if 0 < Xi < θ for

all i and zero otherwise. This can be compactly written as

fX(X; θ) =
1

θn
1{0 < min(X1, . . . , Xn)}1{max(X1, . . . , Xn) < θ}.

Therefore by Fisher’s factorization theorem T (X) ≡ max(X1, . . . , Xn) is a sufficient statistic
for θ. Moreover, it is a minimal sufficient statistic. Indeed, for any X and Y

f(X; θ)

f(Y ; θ)
=

1{0 < min(X1, . . . , Xn)}1{max(X1, . . . , Xn) < θ}
1{0 < min(Y1, . . . , Yn)}1{max(Y1, . . . , Yn) < θ}

https://en.wikipedia.org/wiki/Almost_everywhere
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Sufficient_statistic#Fisher%E2%80%93Neyman_factorization_theorem
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is constant as a function of θ if and only if max(X1, . . . , Xn) = max(Y1, . . . , Yn). Therefore,
by Lehmann and Scheffé (1950, Theorem 6.3) T (X) is a minimal sufficient statistic.3

(c) Find the mean and variance of X(n) = max{X1, . . . , Xn}.

Solution. The cumulative distribution function of X(n) is given by

F (x; θ) ≡ P (max{X1, . . . , Xn} ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x)

(Independence) =
n∏

i=1

P (Xi ≤ x)

(Identicality) =
n∏

i=1

x

θ
=
(x
θ

)n
for x ∈ [0, θ] and zero otherwise. The probability density function is then given by

f(x; θ) = n
xn−1

θn
for x ∈ [0, θ] and zero otherwise.

Therefore the mean is given by

E[X(n)] =

∫ θ

0

xn
xn−1

θn
dx =

n

n+ 1
θ.

For the variance, notice that

E[X2
(n)] =

∫ θ

0

x2n
xn−1

θn
dx =

n

n+ 2
θ2,

whence it follows that

V [X(n)] = E[X2
(n)]− E[X(n)]

2 =
n

n+ 2
θ2 −

(
n

n+ 1

)2

θ2.

(d) Show that n1/2(θ −X(n))
p−→ 0.

Solution. Notice that

P (|n1/2(θ −X(n))| ≥ ε) = P (
√
n(θ −X(n)) ≤ θ − ε

n1/2
)

(CDF) =

(
θ − ε/n1/2

)n
θn

=

(
1− ε/θ

n1/2

)n

=

((
1− ε/θ

n1/2

)√
n
)√

n

.

As n → ∞,
(
1− ε/θ

n1/2

)√n

→ exp(−ε/θ) and hence P (|n1/2(θ − X(n)| ≥ ε) → 0. Therefore

n1/2(θ −X(n))
p−→ 0.4

3For Lehmann and Scheffé’s theorem, I refer to Casella and Berger’s book. See p. 281, Theorem 6.2.13.
4If you are not convinced by this heuristic argument, write

lim
n→∞

(
1− ε/θ√

n

)n

= lim
n→∞

exp

(
n ln

(
1− ε/θ√

n

))
= exp

(
lim
n→∞

ln

(
1− ε/θ√

n

)
/n−1

)
,

and then apply L’Hôpital rule twice. I left these boring calculations to you.

https://www.amazon.com/Statistical-Inference-George-Casella/dp/0534243126
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(e) Find the asymptotic distribution of n(θ − X(n)). Hint: it may be convenient to work
directly with the cdf of n(θ −X(n)).

Solution. We have that

P (n(θ −X(n)) ≤ x) = P (X(n) ≥ x/n− θ)

= 1− P (X(n) ≤ θ − x/n)

= 1− (θ − x/n)n

θn

= 1−
(
1− x/n

n

)n

→ 1− exp(−x/θ)

as n → ∞, which is the CDF of an exponential distribution with parameter 1/θ.

(f) Compare the asymptotic distribution of Un and X(n), derived respectively in items (a)
and (b).

Solution. Un is (asymptotically) normally distributed. Although n(θ − Xn) is (asymptoti-
cally) exponentially distributed, from this result, there is not much that can be said about
the (asymptotic) distribution of X(n). I confess I don’t know the exact answer, but I suspect
it has something to do with extremum value distributions. Any suggestion is welcome.

6. [14.7, LNs] Assume that Xi
iid∼ N(θ, 1).

(a) Show that the joint pdf is a special case of an exponential family.

Solution. The single-parameter exponential family is the class of probability distributions
whose probability density function (or probability mass function, in case of discrete distri-
butions) can be expressed as

f(X; θ) = C(θ) exp(A(θ)T (X))h(X),

where C(θ), A(θ) and h(X) are known functions and C(θ) is non-negative. Since Xi, for
i = 1, . . . , n, are i.i.d., the joint pdf of X ≡ (X1, . . . , Xn) is given by

f(X; θ) =
n∏

i=1

(2π)−1/2 exp

(
−(Xi − θ)2

2

)

= (2π)−n/2 exp

(
−1

2

n∑
i=1

(X2
i − 2θXi + θ2)

)

= (2π)−n/2 exp
(
−n

2
θ
)
exp

(
θ

n∑
i=1

Xi

)
exp

(
−1

2

n∑
i=1

X2
i

)
.

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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By setting

C(θ) ≡ exp

(
θ

n∑
i=1

Xi

)
, A(θ) ≡ θ, T (X) ≡

n∑
i=1

Xi, h(X) ≡ (2π)−n/2 exp

(
−1

2

n∑
i=1

X2
i

)

it becomes clear that this joint pdf is a special case of the exponential family.

(b) Show that the UMP test for H0 : θ ≤ θ0 against H1 : θ > θ0 reject the null when√
n(X̄n − θ0) > c1−α, where c1−α is the 1− α quantile of a standard normal.

Solution. For distributions of the exponential family with A(θ) monotone increasing, there
exists a UMP for testing H0 : θ ≤ θ0 against H1 : θ > θ0 characterized by the critical region

CX = {X | T (X) > k},

where k is determined by α =
∫
CX

f(X; θ0) dx.
5 In particular, from (a) we have A(θ) = θ,

which is clearly monotone increasing, and T (X) =
∑n

i=1 Xi. Therefore the UMP test is
characterized by the critical region

CX =

{
X

∣∣∣∣∣
n∑

i=1

Xi > k

}

=

{
X

∣∣∣∣∣ √n

(
1

n

n∑
i=1

Xi − θ0

)
> k′

}
.

Under the null, X̄ ≡ 1
n

∑n
i=1Xi ∼ N(θ0,

1
n
) and hence

√
n(X̄− θ0) ∼ N(0, 1). It follows that∫

CX

f(X; θ0) dx = 1− Φ(k′) = α ⇐⇒ k′ = Φ−1(1− α),

which is the 1− α quantile of a standard normal distribution.

(c) Suppose someone discards the even observations and constructs a one-sided test using
averages of the odd observations. Compare the asymptotic power (using Pitman’s drift) of
this test with the test using averages of all observations found in part (b).

Solution. Define the sequence θn = θ0 +
h√
n
of local alternatives. For the test using averages

of all observations we have

√
n(X̄ − θ0) =

√
n(X̄ − θn + θn − θ0)

=
√
n(X̄ − θn) +

√
n(θn − θ0)

=
√
n(X̄ − θn) + h.

5For further details I refer to Lehmann and Romano’s book “Testing Statistical Hypothesis”. See Theorem
3.4.1 and, more specifically, Corollary 3.4.1. A rigorous reader will note that the test of Corollary 3.4.1 is
actually a randomized test that also involves rejecting the null hypothesis with some probability γ when
T (x) = k. Note, however, that for the particular case of this question, T (X) is continuous when viewed as
a random variable. Therefore, T (X) = k implies a set of measure zero.

https://link.springer.com/book/10.1007/0-387-27605-X
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Notice that as n → ∞, θn → θ0 and hence
√
n(X̄ − θn)

d−→ N(0, 1) by the central limit

theorem. Therefore
√
n(X̄ − θ0)

d−→ Z + h ∼ N(h, 1), where Z ∼ N(0, 1). The asymptotic
local power is given by

lim
n→∞

P (
√
n(X̄ − θ0) ≥ c) = P (Z + h ≥ c) = P (Z ≥ c− h)

= 1− P (Z < c− h) = 1− Φ(c− h)

= Φ(h− c).

For the one-sided test using averages of the “odd” observations only, suppose, without loss of
generality, that n is even. By discarding the “even” observations we obtain the new statistic

X̄ ′ =
1

(n/2)

n/2∑
i=1

Xi.

By proceeding in the same way as before, we obtain

√
n(X̄ ′ − θ0) =

√
n(X̄ ′ − θn) + h.

Now E[X̄ ′] = θ and V [X̄ ′] = 2/n. Thus, as n → ∞,
√
n(X̄ − θn)

d−→ N(0, 2). Therefore
√
n(X̄ ′ − θ0)

d−→
√
2Z + h ∼ N(h, 2). The asymptotic local power then becomes

lim
n→∞

P (
√
n(X̄ ′ − θ0) ≥ c) = P (

√
2Z + h ≥ c) = P

(
Z ≥ c− h√

2

)
= 1− P

(
Z <

c− h√
2

)
= 1− Φ

(
c− h√

2

)
= Φ

(
h− c√

2

)
.

Denote δ ≡ h− c. Since
√
2 > 1 and Φ is strictly increasing, it follows that

Φ (δ) > Φ

(
δ√
2

)
∀δ ∈ R.

That is, the test based on the full sample statistic X̄ is (asymptotically) uniformly more
powerful than the test based on the half-sample statistic X̄ ′.

(d) Show that the UMP test for H0 : θ ≥ θ0 against H1 : θ < θ0 reject the null when√
n(X̄n − θ0) < cα. How is cα related to c1−α.

Solution. In this case, the UMP is characterized by the critical region

CX =

{
X

∣∣∣∣∣
n∑

i=1

Xi < k

}

=

{
X

∣∣∣∣∣ √n

(
1

n

n∑
i=1

Xi − θ0

)
< k′

}
.
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Therefore ∫
CX

f(X; θ0) dx = Φ(k′) = α ⇐⇒ k′ = Φ−1(α),

which is the α quantile of a standard normal distribution.

Observe that if cα is the α quantile and c1−α the 1 − α quantile of a standard normal
distribution, then Φ(cα) = α, Φ(c1−α) = 1 − α and hence Φ(c1−α) = 1 − Φ(cα) = Φ(−cα).
The last equality follows from the symmetry of the standard normal distribution. Therefore
c1−α = −cα.

7. [15.5, LNs] Let X1, X2, . . . , Xn be a random sample from a distribution on the positive
numbers with pdf f(x, θ) = θ2x exp(−θx), with θ > 0.

(a) Find the maximum likelihood estimator (MLE) θ̂n for θ.

Solution. The log-likelihood function is given by

Ln(X; θ) = ln
n∏

i=1

θ2Xi exp(−θXi) =
n∑

i=1

ln(θ2Xi exp(−θXi))

=
n∑

i=1

[ln θ2 + lnXi − θXi] = n ln θ2 +
n∑

i=1

lnXi − θ
n∑

i=1

Xi.

The first-order condition for the problem of maximizing Ln(X; θ) with respect to θ is

dLn(X; θ)

dθ
= n

2

θ
−

n∑
i=1

Xi = 0,

whence it follows that the maximum likelihood estimator is

θ̂n =
2

1
n

∑n
i=1Xi

=
2

X̄
.

The second-order condition will be satisfied. Believe me.

(b) Is the MLE θ̂ the minimum variance unbiased estimator (MVUE) for θ? Explain your
answer.

Solution. No. For θ̂n to be MVUE it must be unbiased, which is not the case. Observe that

E[X̄] = E[Xi] =

∫ ∞

0

θ2x2 exp(−θx) dx =
2

θ
.

Define g : R++ → R as g(x) = 2/x. This function is strictly convex. Therefore, by Jensen’s
inequality,

E[θ̂n] = E[2/X̄] = E[g(X̄)] > g(E[X̄]) =
2

(2/θ)
= θ.
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(c) Recall that
√
n(θ̂n − θ)

d−→ N(0, I(θ0)
−1). Find the scalar I(θ0).

Solution. By definition, I(θ0) = −E
[
∂2L(θ0)

∂θ20

]
= E [−2/θ20] = 2/θ20, where L is the single

observation log-likelihood function.

(d) Construct a 95% confidence region using the Wald test which rejects the null when
n · I(θ̂n)(θ̂n − θ0)

2 > cα.

Solution. We have that I(θ̂n) = 2/θ̂2n, so the test statistic is given by

n · I(θ̂n)(θ̂n − θ0)
2 = n

2

θ̂2n
(θ̂n − θ0)

2 = 2n

(
1− θ0

θ̂n

)2

.

We reject the null if

2n

(
1− θ0

θ̂n

)2

> cα ⇐⇒

∣∣∣∣∣1− θ0

θ̂n

∣∣∣∣∣ >
√

cα
2n

⇐⇒ θ0

θ̂n
> 1 +

√
2cα
n

or
θ0

θ̂n
< 1−

√
2cα
n

⇐⇒ θ0 >

(
1 +

√
2cα
n

)
θ̂n or θ0 <

(
1−

√
2cα
n

)
θ̂n.

Therefore the critical region is

CX =

{
X

∣∣∣∣∣ θ0 >
(
1 +

√
2cα
n

)
θ̂n or θ0 <

(
1−

√
2cα
n

)
θ̂n

}
,

and hence the confidence region

CC
X =

{
X

∣∣∣∣
(
1−

√
2cα
n

)
θ̂n ≤ θ0 ≤

(
1 +

√
2cα
n

)
θ̂n

}

=

{
X

∣∣∣∣∣
(
1−

√
2cα
n

)
2

X̄
≤ θ0 ≤

(
1 +

√
2cα
n

)
2

X̄

}
.

For a 95% confidence region, just set cα = 3.84.

(e) Construct a 95% confidence region using the Wald test which rejects the null when
n · I(θ0)(θ̂n − θ0)

2 > cα.

Solution. We have that I(θ0) = 2/θ20, so the test statistic is given by

n
2

θ20
(θ̂n − θ0)

2 = 2n

(
θ̂n
θ0

− 1

)2

.
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We reject the null if

2n

(
θ̂n
θ0

− 1

)2

> cα ⇐⇒

∣∣∣∣∣ θ̂nθ0 − 1

∣∣∣∣∣ >
√

cα
2n

⇐⇒ θ̂n
θ0

> 1 +

√
cα
2n

or
θ̂n
θ0

< 1−
√

cα
2n

⇐⇒ θ̂n
θ0

> 1 +

√
cα
2n

or
θ̂n
θ0

< 1−
√

cα
2n

⇐⇒ θ0 <

(
1 +

√
cα
2n

)−1

θ̂n or θ0 >

(
1−

√
cα
2n

)−1

θ̂n.

Therefore the critical region is

CX =

{
X

∣∣∣∣∣ θ0 <
(
1 +

√
cα
2n

)−1

θ̂n or θ0 >

(
1−

√
cα
2n

)−1

θ̂n

}
,

and hence the confidence region

CX =

{
X

∣∣∣∣∣
(
1 +

√
cα
2n

)−1

θ̂n ≤ θ0 ≤
(
1−

√
cα
2n

)−1

θ̂n

}

=

{
X

∣∣∣∣∣
(
1 +

√
cα
2n

)−1
2

X̄
≤ θ0 ≤

(
1−

√
cα
2n

)−1
2

X̄

}
.

For a 95% confidence region, just set cα = 3.84.

(f) How is the MLE ϕ̂n for ϕ = ln θ related to θ̂n?

Solution. Maximum likelihood estimators satisfy the invariance property: for any function
τ , if θ̂n is the maximum likelihood estimator of θ, then τ(θ̂n) is the maximum likelihood
estimator of τ(θ). Therefore ϕ̂n = ln θ̂n.
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8. [7.9, LNs] Let X ∼ N(θ, 1). The density of X is g(x; θ) = (2π)−1/2 exp (−(x− θ)2/2).

(a) Show that the density ratio g(X; θ)/h(x) has mean 1 when X is being drawn from the
density h(x).

Solution.

E
[
g(X; θ)

h(x)

]
=

∫ ∞

−∞

g(x; θ)

h(x)
h(x) dx =

∫ ∞

−∞
g(x; θ) dx = 1.

(b) Let Xi
iid∼ N(0, 1). Report on a table the sample average you found of n−1

∑n
i=1

g(Xi;θ)
g(Xi;0)

for all combinations of n = 10j for j = 1, 2, 3, 4, 5, 6 and θ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Here,
h(x) is the density of a standard normal.

n/θ 0 1 2 3 4 5 6 7 8 9

10 1 1.5284 0.4357 0.3125 0.0001 0.0536 0.000010 0.000000008 0.000000000022 0.000000002230
100 1 0.9669 0.9024 0.5465 0.0345 0.0916 0.000478 0.000056420 0.000000021593 0.000000002721
1000 1 0.9739 1.3913 0.7259 0.4612 0.1379 0.005234 0.000055074 0.000000429973 0.000000000436
10000 1 0.9908 1.1457 0.7672 0.3040 0.4634 1.412345 0.000375722 0.000026128897 0.000000022828
100000 1 1.0009 0.9915 0.9957 1.1448 1.7508 0.273413 0.060356958 0.000537437971 0.000016813355
1000000 1 1.0009 0.9915 0.9957 1.1448 1.7508 0.273413 0.0603569584 0.0005374379711 0.0000168133549

(c) Explain your results by plotting densities of N(0, 1), N(3, 1), N(6, 1), and N(9, 1).

Solution. The goal of this question is to estimate the mean of a density ratio of the form
g(X; θ)/h(X), where X ∼ N(0, 1). From item (a), we know that the true population mean
of this density ratio is always 1, irrespective of the specific density function h(X). Thus,
according to the law of large numbers, we would expect the sample means from the results
in table (b) to converge to 1 as the sample size n increases, regardless of the value of θ.
Indeed, this convergence is observed in some cases, particularly for small values of θ (e.g.,
from 1 to 4). However, for larger values of θ, the convergence seems to break down. For
instance, when θ = 9, even with a very large sample size like n = 1, 000, 000, the estimated
mean remains extremely distant from 1.6

What’s happening? Is the law of large numbers failing for very high values of θ? Figure 1
can help us address this question. By looking at the density of N(0, 1) and comparing it
to the density of N(9, 1), and considering the ratio g(Xi; 9)/g(Xi; 0) as an example, we can
observe that since Xi ∼ N(0, 1), on average, the draws will be close to zero. Thus, for the
vast majority of draws, g(Xi; 0) will take a high value, while g(Xi; 9) will take an extremely
low value. As a result, in the vast majority of draws, the ratio g(Xi; 9)/g(Xi; 0) will assume
a very low value, virtually zero. However, in the occurrence of extremely rare events where
positive draws of Xi deviate very far from zero, the logic will be reversed: g(Xi; 9) will take
a high value, and g(Xi; 0) will take an extremely low value, causing the ratio to skyrocket to
an extremely high value. This outlier will force the sample mean upwards, bringing it again

6I even tested with an even larger sample size of n = 50, 000, 000, but there was hardly any difference.
The estimate remains significantly far from 1.
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closer to 1 and compensating for all the previous observations.

Now it becomes clear what is actually occurring: it is not that the law of large numbers fails
for high values of θ; rather, the issue lies in the fact that, for high values of θ, the realizations
of “crucial importance” for the convergence of the sample mean to the population mean are
extremely rare. The convergence happens due to an exceedingly small number of extremely
rare events, which carry a disproportionately significant impact compared to the rest of the
events. As a consequence, in order to computationally observe the convergence for high
values of θ, an enormously large number of observations would be required — practically
approaching infinity! This is necessary to ensure that these exceptionally rare events happen
frequently enough to “drive the convergence.” However, from a computational standpoint,
performing such an immense number of simulations can be impractical.

Figure 1: Normal densities g(x; θ) with θ = 0, 3, 6 and 9.
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(d) Show that h(x) = 10−1
∑9

j=0 g(x; j) is a density. Furthermore, how would you draw a
random sample from h(x) in practice?

Solution. For the sake of simplicity, let’s abstract from technicalities involving the formal
definition of a density function by just assuming that for h(x) to be a density it suffices to
show that (i) h(x) integrates to 1 over (−∞,∞) and (ii) h(x) is nonnegative for all x.
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We have that∫ ∞

−∞
10−1

9∑
j=0

g(x; j) dx =

∫ ∞

−∞
10−1

9∑
j=0

exp(−(x− θ)2/2) dx (1)

= 10−1

9∑
j=0

∫ ∞

−∞
(2π)−1/2 exp(−(x− θ)2/2) dx (2)

= 10−1

9∑
j=0

1 = 10−110 = 1. (3)

Moreover, since g is a density, g(x; j) ≥ 0 for all x and j = 0, . . . , 9, whence it follows that
h(x) ≥ 0 for all x. Therefore, h is a density.

In order to draw a random sample from h(x) we could use inverse transform sampling. In
practice, we simply generate a draw u from a discrete uniform distribution in the interval
[0, 9] and then generate a draw from a normal distribution with mean u and variance 1; that
is, a draw from N(u, 1). The resulting draw will be equivalent to a draw from h(x).

(e) Report on a table the sample average you found of n−1
∑n

i=1
g(Xi;θ)
h(Xi)

for all combinations of

n = 10j for j = 1, 2, 3, 4, 5, 6 and θ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Here h(x) = 10−1
∑9

j=0 g(x; j).

n/θ 0 1 2 3 4 5 6 7 8 9

10 0.713267 0.876365 0.619611 0.848035 0.998121 0.769224 0.751788 0.54929 0.641165 1.114872
100 1.068189 1.045083 1.052162 1.248939 1.022221 0.847806 0.97673 0.827878 1.182188 0.799998
1000 1.108903 0.994146 0.934179 0.980026 0.918329 1.070847 1.023598 1.035077 1.02438 0.987447
10000 0.99591 1.000614 1.000128 0.988394 0.984994 1.002482 0.983719 1.002187 1.003022 1.001579
100000 1.009509 1.001897 1.007725 0.999622 1.001571 0.996998 1.005517 0.999736 1.004651 1.003114
1000000 0.999541 0.998239 1.000453 1.000378 1.000569 0.998407 0.999694 0.999728 0.998736 0.99614

(f) Explain your results by plotting the densities of h(x) and of N(0, 1), N(3, 1), N(6, 1),
and N(9, 1).

Solution. One way to address the problem described in item (c) is to generate draws from
a distribution that assigns greater “importance” (i.e., higher frequency) to the values that
“truly matter” for determining the convergence of the sample mean of the density ratio. The
distribution defined in item (d) accomplishes precisely that. Continuing with the example
of the case θ = 9 described in item (c), when the draws are generated from h(x) instead of
g(x; 0), higher values of the numerator g(Xi; 9) occur more frequently, and the convergence
of the sample mean to 1 happens without relying as much on the occurrence of extremely
rare events. Figure 2 illustrates how the distribution h(x) “prioritizes” the sampling in more
important regions of g(x; 9) for determining the convergence when compared to g(x; 0). This
method has a name: importance sampling.

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Importance_sampling
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Figure 2: Normal densities g(x; θ) with θ = 1, . . . , 9 and mixture density h(x).
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9. [2.5, Hansen] Show that σ2(X) is the best predictor of e2 given X:

(a) Write down the mean-squared error of a predictor h(X) for e2.

Solution. E[(e2 − h(X))2].

(b) What does it mean to be predicting e2?

Solution. The CEF error is defined as e = Y −m(X), where m(X) = E[Y |X]. Therefore,
to be predicting e2 means to be predicting (Y − E[Y |X])2, which can be understood as the
squared prediction error of Y when considering the CEF as a predictor of Y . Recall that
the CEF is the best predictor of Y . Therefore, to be predicting e2 means to be predicting
the squared prediction error of Y when considering the best possible predictor of Y .

(c) Show that σ2(X) minimizes the mean-squared error and is thus the best predictor.

Solution. Note that

E[(e2 − h(X))2] = E[(e2 − σ2(X) + σ2(X)− h(X))2]

= E[(e2 − σ2(X))2 + 2(e2 − σ2(X))(σ2(X)− h(X)) + (σ2(X)− h(X))2]

= E[(e2 − σ2(X))2] + 2E[(e2 − σ2(X))(σ2(X)− h(X))] + E[(σ2(X)− h(X))2]

= E[(e2 − σ2(X))2] + E[(σ2(X)− h(X))2]

≥ E[(e2 − σ2(X))2].

This holds for any predictor h(X). Therefore the MSQE is minimized when h(X) = σ2(X).
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The last equality follows from the L.I.E., together with the definition of σ2(X) = EX [e
2|X]:

E[(e2 − σ2(X))(σ2(X)− h(X))] + E[(σ2(X)− h(X))2] = E[EX [(e
2 − σ2(X))(σ2(X)− h(X))|X]]

= E[(EX [e
2|X]− σ2(X))(σ2(X)− h(X))]

= E[(σ2(X)− σ2(X))(σ2(X)− h(X))]

= 0.

9. [2.21, Hansen] Consider the short and long projections

Y = Xγ1 + e,

Y = Xβ1 +X2β2 + u.

(a) Under what condition does γ1 = β1?

Solution. From the analysis of omitted variable bias, we know that γ1 = β1 under one of two
conditions: β2 = 0 in the long regression or E[xix

2
i ] = E[x3

i ] = 0. Note that if E[xi] = 0, the
latter condition is equivalent to xi having zero skewness.

(b) Take the long projection as Y = Xθ1 + X3θ2 + η. Is there a condition under which
γ1 = θ1?

Solution. From the same argument, γ1 = θ1 under one of two conditions: θ2 = 0 in the long
regression, or E[xix

3
i ] = E[x4

i ] = 0. The latter condition is impossible. Therefore γ1 = θ1
only if θ2 = 0 in the long regression.

https://en.wikipedia.org/wiki/Skewness

