
Statistics II Problem Set 1
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli July 23, 2024

1. [6.11, LNs] Prove the following (unrelated) items:

(a) Let X have a continuous and strictly increasing distribution F (x) and define the random
variable Y as F (X). Find the cdf and pdf of Y .

Solution. Denote the cdf and the pdf of Y by FY (y) and fY (y), respectively.

FY (y) = P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y.

Thus the pdf is simply fY (y) = F ′
Y (y) = 1.

(b) Let X and Y be independent random variables. Let U = g(X) and V = h(Y ). Is U
independent of V ? Prove it or give a counter example.

Solution. By definition, X and Y are independent ⇐⇒ for all measurable sets A and B
the events X−1(A) and Y −1(B) are independent. From ( =⇒ ) it follows that, in particular,
(X−1 ◦ g−1)(C) = X−1(g−1(C)) and (Y −1 ◦h−1)(D) = Y −1(h−1(D)) are independent for any
arbitrary measurable sets C and D. Since C and D are arbitrary, it follows from ( ⇐= )
that (X−1 ◦ g−1)−1 = g(X) and (Y −1 ◦ h−1)−1 = h(Y ) are independent. In other words, the
abstract definition of independence makes this assertion trivial. Two random variables are
independent if and only if the sigma-algebras they generate are independent. Because the
sigma-algebra generated by a measurable function of a sigma-algebra is a sub-sigma-algebra,
it follows that any measurable functions of those random variables have independent sigma-
algebras, whence those functions are independent.

(c) Let X and Y be two random variables with E(X) = E(Y ) = 0. Assume that E(XY )
exists and E(X|Y ) = 0. Show that X and Y are uncorrelated.

Solution. E[(X − E[X])(Y − E[Y ])] = E[XY ] = E[E[XY |Y ]] = E[E[X|Y ]Y ] = 0.

2. [7.2, LNs] This question is on an application of the Cramér-Wold device, and uses the
(multivariate) continuity theorem. Let Xn, 1 ≤ n ≤ ∞, be random vectors with characteris-

tic function φn(t). (i) if Xn
d−→ X then φn(t) → φ(t) for all t; and, (ii) if φn(t) converges

pointwise to a limit φ(t) that is continuous at zero, then Xn
d−→ X (with X having charac-

teristic function φ(t).

(a)Use characteristic functions to prove the Crámer-Wold device: a sequence of k-dimensional
random vectors Sn, n = 1, 2, . . . , converges in distribution to a random vector S if and only

if α′Sn
d−→ α′S for every fixed vector α ̸= 0.
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Solution. If Sn
d−→ S, then φn(τ) → φ(τ) for all τ ∈ Rk. In particular, we can let τ = αt for

any arbitrary t ∈ R and every fixed vector α ∈ Rk\{0} so that

E[eitα′Sn ] = E[ei(αt)′Sn ] = φn(αt) → φ(αt) = E[ei(αt)′S] = E[eitα′S].

Observe that φn(tα) and φ(tα) are precisely the characteristic functions of α′Sn and α′S,
respectively, when viewed as functions of t only (i.e., given a fixed α ∈ Rk). Therefore

α′Sn
d−→ α′S. Conversely, if α′Sn → α′S for every fixed vector α ̸= 0, then

E[eiτα′Sn ] → E[eiτα′S] for all τ ∈ R.

In particular, we can let τ = 1 so that

φn(α) = E[eiα′Sn ] → E[eiα′S] = φ(α) for all α ∈ Rk.

Observe that φn(α) and φ(α) are precisely the characteristic functions of Sn and S, respec-

tively, as functions of α ∈ Rk. Therefore Sn
d−→ S.

(b) Let X1, X2, . . . , Xn be i.i.d. random vectors of dimension k with E[Xi] = µ and variance
V (Xi) = E[(Xi − µ)(Xi − µ)′] = Σ. The variance Σ is positive definite (a′Σa > 0 for any
a ̸= 0). Find the limiting distribution of

√
n(X̄n − µ).

Solution. Let Sn =
√
n(X̄n−µ) and observe that, by the univariate central limit theorem, for

any α ∈ Rk\{0} we have α′Sn =
√
n(α′X̄n − α′µ)

d−→ N(0, α′Σα). Notice that N(0, α′Σα) =

α′N(0,Σ) =: α′S, where S ∼ N(0,Σ), whence it follows, by (a), that Sn
d−→ S. We have just

proved the multivariate central limit theorem.

3. [7.9, LNs] Let X ∼ N(θ, 1). The density of X is g(x; θ) = (2π)−1/2 exp (−(x− θ)2/2).

(a) Show that the density ratio g(X; θ)/h(x) has mean 1 when X is being drawn from the
density h(x).

Solution.

E
[
g(X; θ)

h(x)

]
=

∫ ∞

−∞

g(x; θ)

h(x)
h(x) dx =

∫ ∞

−∞
g(x; θ) dx = 1.

(b) Let Xi
iid∼ N(0, 1). Report on a table the sample average you found of n−1

∑n
i=1

g(Xi;θ)
g(Xi;0)

for all combinations of n = 10j for j = 1, 2, 3, 4, 5, 6 and θ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Here,
h(x) is the density of a standard normal.

n/θ 0 1 2 3 4 5 6 7 8 9

10 1 1.5284 0.4357 0.3125 0.0001 0.0536 0.000010 0.000000008 0.000000000022 0.000000002230
100 1 0.9669 0.9024 0.5465 0.0345 0.0916 0.000478 0.000056420 0.000000021593 0.000000002721
1000 1 0.9739 1.3913 0.7259 0.4612 0.1379 0.005234 0.000055074 0.000000429973 0.000000000436
10000 1 0.9908 1.1457 0.7672 0.3040 0.4634 1.412345 0.000375722 0.000026128897 0.000000022828
100000 1 1.0009 0.9915 0.9957 1.1448 1.7508 0.273413 0.060356958 0.000537437971 0.000016813355
1000000 1 1.0009 0.9915 0.9957 1.1448 1.7508 0.273413 0.0603569584 0.0005374379711 0.0000168133549
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(c) Explain your results by plotting densities of N(0, 1), N(3, 1), N(6, 1), and N(9, 1).

Solution. The goal of this question is to estimate the mean of a density ratio of the form
g(X; θ)/h(X), where X ∼ N(0, 1). From item (a), we know that the true population mean
of this density ratio is always 1, irrespective of the specific density function h(X). Thus,
according to the law of large numbers, we would expect the sample means from the results
in table (b) to converge to 1 as the sample size n increases, regardless of the value of θ.
Indeed, this convergence is observed in some cases, particularly for small values of θ (e.g.,
from 1 to 4). However, for larger values of θ, the convergence seems to break down. For
instance, when θ = 9, even with a very large sample size like n = 1, 000, 000, the estimated
mean remains extremely distant from 1.1

What’s happening? Is the law of large numbers failing for very high values of θ? Figure 1
can help us address this question. By looking at the density of N(0, 1) and comparing it
to the density of N(9, 1), and considering the ratio g(Xi; 9)/g(Xi; 0) as an example, we can
observe that since Xi ∼ N(0, 1), on average, the draws will be close to zero. Thus, for the
vast majority of draws, g(Xi; 0) will take a high value, while g(Xi; 9) will take an extremely
low value. As a result, in the vast majority of draws, the ratio g(Xi; 9)/g(Xi; 0) will assume
a very low value, virtually zero. However, in the occurrence of extremely rare events where
positive draws of Xi deviate very far from zero, the logic will be reversed: g(Xi; 9) will take
a high value, and g(Xi; 0) will take an extremely low value, causing the ratio to skyrocket to
an extremely high value. This outlier will force the sample mean upwards, bringing it again
closer to 1 and compensating for all the previous observations.

Now it becomes clear what is actually occurring: it is not that the law of large numbers fails
for high values of θ; rather, the issue lies in the fact that, for high values of θ, the realizations
of “crucial importance” for the convergence of the sample mean to the population mean are
extremely rare. The convergence happens due to an exceedingly small number of extremely
rare events, which carry a disproportionately significant impact compared to the rest of the
events. As a consequence, in order to computationally observe the convergence for high
values of θ, an enormously large number of observations would be required — practically
approaching infinity! This is necessary to ensure that these exceptionally rare events happen
frequently enough to “drive the convergence.” However, from a computational standpoint,
performing such an immense number of simulations can be impractical.

1I even tested with an even larger sample size of n = 50, 000, 000, but there was hardly any difference.
The estimate remains significantly far from 1.



Statistics II Problem Set 1 - Page 4 of 16 July 23, 2024

Figure 1: Normal densities g(x; θ) with θ = 0, 3, 6 and 9.
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(d) Show that h(x) = 10−1
∑9

j=0 g(x; j) is a density. Furthermore, how would you draw a
random sample from h(x) in practice?

Solution. For the sake of simplicity, let’s abstract from technicalities involving the formal
definition of a density function by just assuming that for h(x) to be a density it suffices to
show that (i) h(x) integrates to 1 over (−∞,∞) and (ii) h(x) is nonnegative for all x.

We have that∫ ∞

−∞
10−1

9∑
j=0

g(x; j) dx =

∫ ∞

−∞
10−1

9∑
j=0

exp(−(x− θ)2/2) dx (1)

= 10−1

9∑
j=0

∫ ∞

−∞
(2π)−1/2 exp(−(x− θ)2/2) dx (2)

= 10−1

9∑
j=0

1 = 10−110 = 1. (3)

Moreover, since g is a density, g(x; j) ≥ 0 for all x and j = 0, . . . , 9, whence it follows that
h(x) ≥ 0 for all x. Therefore, h is a density.

In order to draw a random sample from h(x) we could use inverse transform sampling. In
practice, we simply generate a draw u from a discrete uniform distribution in the interval
[0, 9] and then generate a draw from a normal distribution with mean u and variance 1; that
is, a draw from N(u, 1). The resulting draw will be equivalent to a draw from h(x).

https://en.wikipedia.org/wiki/Inverse_transform_sampling
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(e) Report on a table the sample average you found of n−1
∑n

i=1
g(Xi;θ)
h(Xi)

for all combinations of

n = 10j for j = 1, 2, 3, 4, 5, 6 and θ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Here h(x) = 10−1
∑9

j=0 g(x; j).

n/θ 0 1 2 3 4 5 6 7 8 9

10 0.713267 0.876365 0.619611 0.848035 0.998121 0.769224 0.751788 0.54929 0.641165 1.114872
100 1.068189 1.045083 1.052162 1.248939 1.022221 0.847806 0.97673 0.827878 1.182188 0.799998
1000 1.108903 0.994146 0.934179 0.980026 0.918329 1.070847 1.023598 1.035077 1.02438 0.987447
10000 0.99591 1.000614 1.000128 0.988394 0.984994 1.002482 0.983719 1.002187 1.003022 1.001579
100000 1.009509 1.001897 1.007725 0.999622 1.001571 0.996998 1.005517 0.999736 1.004651 1.003114
1000000 0.999541 0.998239 1.000453 1.000378 1.000569 0.998407 0.999694 0.999728 0.998736 0.99614

(f) Explain your results by plotting the densities of h(x) and of N(0, 1), N(3, 1), N(6, 1),
and N(9, 1).

Solution. One way to address the problem described in item (c) is to generate draws from
a distribution that assigns greater “importance” (i.e., higher frequency) to the values that
“truly matter” for determining the convergence of the sample mean of the density ratio. The
distribution defined in item (d) accomplishes precisely that. Continuing with the example
of the case θ = 9 described in item (c), when the draws are generated from h(x) instead of
g(x; 0), higher values of the numerator g(Xi; 9) occur more frequently, and the convergence
of the sample mean to 1 happens without relying as much on the occurrence of extremely
rare events. Figure 2 illustrates how the distribution h(x) “prioritizes” the sampling in more
important regions of g(x; 9) for determining the convergence when compared to g(x; 0). This
method has a name: importance sampling.

Figure 2: Normal densities g(x; θ) with θ = 1, . . . , 9 and mixture density h(x).
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https://en.wikipedia.org/wiki/Importance_sampling
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4. [10.3, LNs] Let W1, . . . ,Wn be unbiased estimators of a parameter θ with V (Wi) = σ2
i and

C(Wi,Wj) = 0 if i ̸= j.

(a) Show that, of all unbiased estimators of the form
∑n

i=1 aiWi, where the ai’s are constants,
the estimator

W ∗ =

∑n
i=1 Wi/σ

2
i∑n

i=1 1/σ
2
i

has minimum variance.

Solution. First, notice that unbiasedness implies

E

[
n∑

i=1

aiWi

]
=

n∑
i=1

aiE[Wi] =
n∑

i=1

aiθ =

(
n∑

i=1

ai

)
θ = θ.

Thus we must have
∑n

i=1 ai = 1. Further, observe that the zero-covariance assumption
implies

V

(
n∑

i=1

aiWi

)
=

n∑
i=1

a2iV (Wi) =
n∑

i=1

a2iσ
2
i .

We want to minimize
∑n

i=1 a
2
iσ

2
i with respect to ai subject to the constraint

∑n
i=1 ai = 1.

Let λ be the Lagrange multiplier for this problem. The first order conditions are

2aiσ
2
i − λ = 0,

whence

ai =
λ

2
(1/σ2

i ). (4)

Summing ai over i = 1, . . . , n, we obtain

n∑
i=1

ai = λ

n∑
i=1

1

2σ2
i

,

whence

λ =
2∑n

i=1(1/σ
2
i )
.

Plugging λ into (4) we obtain

a∗i ≡
(1/σ2

i )∑n
i=1(1/σ

2
i )
.

Thus

W ∗ =
n∑

i=1

a∗iWi =
n∑

i=1

(1/σ2
i )∑n

i=1(1/σ
2
i )
Wi =

∑n
i=1 Wi/σ

2
i∑n

i=1 1/σ
2
i

, (5)

as desired.
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(b) Show that

V (W ∗) =
1∑n

i=1 1/σ
2
i

.

Solution. Taking the variance of (5) we obtain

V (W ∗) =

∑n
i=1(1/σ

2
i )

2σ2
i

(
∑n

i=1 1/σ
2
i )

2 =

∑n
i=1 1/σ

2
i

(
∑n

i=1 1/σ
2
i )

2 =
1∑n

i=1 1/σ
2
i

.

5. [11.6, LNs] Let (Xi, Yi) be the age and unemployment duration for person i, for i =
1, . . . , N . Assume that age has a normal distribution with mean 40 and standard deviation
10. Given age Xi, Yi, the duration of unemployment in weeks is assumed to have an exponen-
tial distribution with mean exp(θ ·Xi). Assume that the observations for different individuals
are independent. The observations are (20, 9), (45, 27), (42, 26), (32, 10), (52, 41), (32, 25),
(25, 19), (23, 31), (40, 32), (46, 44).

(a) Plot the log likelihood function for θ between −1 and 1.

Solution. By the definition of conditional probability density functions we can write

fXi,Yi
(x, y) = fYi|Xi

(y|x)f(x) = exp(−θx) exp(− exp(−θx)y)(2π·100)−1/2 exp

(
−1

2

(
x− 40

10

)2
)
.

The joint density is then
∏N

i=1 fXi,Yi
(x, y), whence the log-likelihood function is given by

L(θ) =
N∑
i=1

−θxi − exp(−θxi)yi −
1

2
ln(200π)− 1

2

(
xi − 40

10

)2

= −
N∑
i=1

(xi − 40)2

200
− n

2
ln(200π)− θ

N∑
i=1

xi −
N∑
i=1

exp(−θxi)yi.

The plot is shown below. For improved visualization, I have plotted θ in the range of −0.4
to 0.4, rather than −1 to 1.
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Figure 3: Log likelihood function for θ ∈ [−0.4, 0.4].

(b) Show that the log likelihood function is concave.

Solution. The first order derivative of L(θ) with respect to θ is

∂L(θ)

∂θ
= −

N∑
i=1

xi +
N∑
i=1

exp(−θxi)xiyi.

Thus, the second order derivative of L(θ) with respect to θ is

∂2L(θ)

∂θ
= −

N∑
i=1

exp(−θxi)x
2
i yi.

Since exp(−θxi), x
2
i , and yi are nonnegative, we have that ∂2L(θ)

∂θ
≤ 0 for all possible values

of θ. Therefore L(θ) is concave.

(c) Find the maximum likelihood estimate of θ by starting at θ0 = 0 and using the Newton-
Raphson algorithm for finding a maximum of a concave function

θk+1 = θk −
∂2L

∂θ2
(θk)

−1 · ∂L
∂θ

(θk)

where L(θ) is the log likelihood function. Report the sequence of values θk and L(θk) for
k = 1, 2, 3, . . . , 10.
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Solution. The results are reported below.

k θk L(θk)
1 0.02293535 -150.7605715
2 0.045716507 -100.5635007
3 0.066394956 -84.78310755
4 0.081178714 -81.38430538
5 0.087204246 -81.08629081
6 0.087975548 -81.08259457
7 0.087986528 -81.08259385
8 0.08798653 -81.08259385
9 0.08798653 -81.08259385
10 0.08798653 -81.08259385

Table 1: θ and log likelihood values for each Newton-Raphson step.

6. [12.4, LNs] This question is on (minimally) sufficient statistics.

(a) Find the sufficient statistic for Xi ∼ N(θ, 1).

Solution. Write the probability density function of X = (X1, X2, . . . , Xn) as

f(x) =
1

(2π)n/2
exp

(
−
∑n

i=1(xi − θ)2

2

)
=

1

(2π)n/2
exp

(
−
∑n

i=1(x
2
i − 2xiθ + θ2)

2

)
=

1

(2π)n/2
exp

(
−
∑n

i=1 x
2
i + 2θ

∑n
i=1 xi −

∑n
i=1 θ

2

2

)
=

1

(2π)n/2
exp

(
−
∑n

i=1 x
2
i

2
+ θ

n∑
i=1

xi −
nθ2

2

)

=
1

(2π)n/2
exp

(
−
∑n

i=1 x
2
i

2

)
exp

(
θ

n∑
i=1

xi −
nθ2

2

)
.

Let

h(x) ≡ 1

(2π)n/2
exp

(
−
∑n

i=1 x
2
i

2

)
, g(T (x), θ) ≡ exp

(
θT (x)− nθ2

2

)
, T (x) ≡

n∑
i=1

xi.

By the Factorization Theorem, T (x) =
∑n

i=1 xi is a sufficient statistic for Xi ∼ N(θ, 1).
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(b) Find the sufficient statistic for Xi ∼ N(θ, θ).

Solution. Write the probability density function of X = (X1, X2, . . . , Xn) as

f(x) =
1

(2πθ)n/2
exp

(
−
∑n

i=1(xi − θ)2

2θ

)
=

1

(2πθ)n/2
exp

(
−
∑n

i=1(x
2
i − 2xiθ + θ2)

2θ

)
=

1

(2πθ)n/2
exp

(
−
∑n

i=1 x
2
i + 2θ

∑n
i=1 xi −

∑n
i=1 θ

2

2θ

)
=

1

(2πθ)n/2
exp

(
n∑

i=1

xi −
1

2θ

n∑
i=1

x2
i −

nθ

2

)

=
1

(2π)n/2
exp

(
n∑

i=1

xi

)
exp

(
− 1

2θ

n∑
i=1

x2
i −

nθ

2

)
.

Let

h(x) ≡ 1

(2π)n/2
exp

(
n∑

i=1

xi

)
, g(T (x), θ) ≡ exp

(
− 1

2θ
T (x)− nθ

2

)
, T (x) ≡

n∑
i=1

x2
i .

By the Factorization Theorem, T (x) =
∑n

i=1 x
2
i is a sufficient statistic for Xi ∼ N(θ, θ).

(c) Find the sufficient statistic for Xi ∼ N(θ, θ2).

Solution. Write the probability density function of X = (X1, X2, . . . , Xn) as

f(x) =
1

(2πθ2)n/2
exp

(
−
∑n

i=1(xi − θ)2

2θ2

)
=

1

(2πθ2)n/2
exp

(
−
∑n

i=1(x
2
i − 2xiθ + θ2)

2θ2

)
=

1

(2πθ2)n/2
exp

(
−
∑n

i=1 x
2
i + 2θ

∑n
i=1 xi −

∑n
i=1 θ

2

2θ2

)
=

1

(2πθ2)n/2
exp

(
1

θ

n∑
i=1

xi −
1

2θ2

n∑
i=1

x2
i −

n

2

)

=
1

(2πθ2)n/2
exp

(
−n

2

)
exp

([
θ−1 (−2θ2)−1

] [∑n
i=1 xi∑n
i=1 x

2
i

])
.

Let

h(x) ≡ exp
(
−n

2

)
, g(T (x), θ) ≡ 1

(2πθ2)n/2
exp

([
θ−1 (−2θ2)−1

]
T (x)

)
,

and T (x) ≡

(
n∑

i=1

xi,

n∑
i=1

x2
i

)′

.

By the Factorization Theorem, T (x) = (
∑n

i=1 xi,
∑n

i=1 x
2
i )

′
is a sufficient statistic for Xi ∼

N(θ, θ2).
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(d) Find the sufficient statistic for Xi ∼ N(µ, σ2).

Solution. Write the probability density function of X = (X1, X2, . . . , Xn) as

f(x) =
1

(2πσ2)n/2
exp

(
−
∑n

i=1(xi − µ)2

2σ2

)
=

1

(2πσ2)n/2
exp

(
−
∑n

i=1(x
2
i − 2xiµ+ µ2)

2σ2

)
=

1

(2πσ2)n/2
exp

(
−
∑n

i=1 x
2
i + 2µ

∑n
i=1 xi −

∑n
i=1 θ

2

2σ2

)
=

1

(2πµ2)n/2
exp

(
θ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2
i −

nµ2

2σ2

)

=
1

(2πµ2)n/2
exp

(
−nµ2

2σ2

)
exp

([
µ/σ2 (−2σ2)−1

] [∑n
i=1 xi∑n
i=1 x

2
i

])
.

Let θ ≡ (µ, σ2)′ and

h(x) ≡ 1, g(T (x), θ) ≡ 1

(2πµ2)n/2
exp

(
−nµ2

2σ2

)
exp

([
µ/σ2 (−2σ2)−1

]
T (x)

)
,

and T (x) ≡

(
n∑

i=1

xi,
n∑

i=1

x2
i

)′

.

By the Factorization Theorem, T (x) = (
∑n

i=1 xi,
∑n

i=1 x
2
i )

′
is a sufficient statistic for Xi ∼

N(µ, σ2).

7. Show that the likelihood ratio (LR), score (LM), and Wald tests are asymptotically equiv-
alent for testing H0 : θ = θ0 against H1 : θ ̸= θ0.

Solution. I shall prove the asymptotic equivalence of these three tests based on a likelihood
estimator of θ. However, it is important to note that this equivalence extends to more gen-
eral classes of estimators, such as generalized method of moments (GMM) estimators. For a
comprehensive discussion on the asymptotic equivalence of these tests in broader contexts,
I refer the reader to Newey and McFadden (1994).2 For generality, I will assume θ is a vector.

Given the maximum likelihood estimator θ̂ ≡ argmaxθ∈Θ L(θ) of θ0 and a consistent estima-
tor Îθ for the Fisher information at θ, the likelihood ratio (LR), score (LM), and Wald test
statistics are defined as follows:

LR ≡ 2(L(θ̂)− L(θ0)),

LM ≡ N−1 [∇θL(θ0)]
′ Î−1

θ0
[∇θL(θ0)] ,

W ≡ N(θ̂ − θ0)
′Îθ̂(θ̂ − θ0).

2Newey, Whitney K., and Daniel McFadden. “Large sample estimation and hypothesis testing.” Hand-
book of Econometrics, vol. 4 (1994): 2111-2245.



Statistics II Problem Set 1 - Page 12 of 16 July 23, 2024

To demonstrate the asymptotic equivalence of the three tests, we need to show that they
share the same asymptotic distribution. Specifically, I will show that W , LR, and LM all
asymptotically follow a chi-squared distribution with k degrees of freedom, where k = dim(θ).

For the LR test statistic, consider a second-order Taylor expansion of L(θ̂) around θ0,

L(θ̂) = L(θ0) + (θ̂ − θ0)
′∇θL(θ0) +

1

2
(θ̂ − θ0)

′∇θθ′L(θ0)(θ̂ − θ0) + op(1),

whence

2(L(θ̂)− L(θ0)) = 2
√
n(θ̂ − θ0)

′ 1√
n
∇θL(θ0) +

√
n(θ̂ − θ0)

′ 1

n
∇θθ′L(θ0)

√
n(θ̂ − θ0) + op(1).

(6)

Now, observe that a first-order Taylor expansion of ∇θL(θ̂) around θ0 gives

∇θL(θ̂) = ∇θL(θ0) +∇θθ′L(θ0)(θ̂ − θ0) + op(1).

Notice that by definition of θ̂ we must have ∇θL(θ̂) = 0, whence

1√
n
∇θL(θ0) = − 1

n
∇θθ′L(θ0)

√
n(θ̂ − θ0) + op(1).

Plugging this back into (6) gives

LR = 2
√
n(θ̂ − θ0)

′
(
− 1

n
∇θθ′L(θ0)

)√
n(θ̂ − θ0) +

√
n(θ̂ − θ0)

′ 1

n
∇θθ′L(θ0)

√
n(θ̂ − θ0) + op(1)

=
√
n(θ̂ − θ0)

′
(
− 1

n
∇θθ′L(θ0)

)√
n(θ̂ − θ0) + op(1).

Observe that by the Central Limit Theorem,
√
N(θ̂−θ0)

d−→ X ∼ N(0, I−1
θ0

), and by the Law

of Large Numbers − 1
n
∇θθ′L(θ0)

p−→ Iθ0 . Therefore, by Slutsky’s Theorem,

LR
d−→ X ′I(θ0)X ∼ χ2(k).

Alternatively, one could perform an expansion of L(θ0) around θ̂,

L(θ0) = L(θ̂) + (θ0 − θ̂)′∇θL(θ̂) +
1

2
(θ0 − θ̂)′∇θθ′L(θ̂)(θ0 − θ̂) + op(1)

= L(θ̂) +
1

2
(θ̂ − θ0)

′∇θθ′L(θ̂)(θ̂ − θ0) + op(1).

Then, plugging L(θ0) into the expression for the LR statistic,

LR = −(θ̂ − θ0)
′∇θθ′L(θ̂)(θ̂ − θ0) + op(1)

=
√
n(θ̂ − θ0)

′
(
1

n
∇θθ′L(θ̂)

)√
n(θ̂ − θ0) + op(1)

d−→ X ′I(θ0)X ∼ χ2(k).
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For the score (LM) test statistic, write

LM ≡
[

1√
N
∇θL(θ0)

]′
Î−1
θ0

[
1√
N
∇θL(θ0)

]
.

Observe that by the Central Limit Theorem, 1√
N
∇θL(θ0)

d−→ Z ∼ N(0, I(θ0)), and by the

Law of Large Numbers and the Continuous Mapping Theorem Î−1
θ0

p−→ I−1
θ0

. Therefore, by
Slutsky’s Theorem,

W
d−→ Z ′I−1

θ0
Z ∼ χ2(k).

For the Wald statistic, write

W =
√
N(θ̂ − θ0)

′Îθ̂

√
N(θ̂ − θ0).

Observe that by the Central Limit Theorem,
√
N(θ̂−θ0)

d−→ X ∼ N(0, I−1
θ0

), and by the Law

of Large Numbers Îθ̂

p−→ Iθ0 . Therefore, by Slutsky’s Theorem,

W
d−→ X ′Iθ0X ∼ χ2(k).

8. [7.5, LNs] Let X1, X2, . . . , be i.i.d. random variables with cdf F . Let

F̂N(x) =
1

N

N∑
i=1

I[Xi ≤ x]

be the empirical distribution. Use the SLLN to show that F̂N(x)
a.s.−−→ F (x), and use the CLT

for i.i.d. random variables to find the limiting distribution of

√
N


F̂N(x1)

...

F̂N(xk)

−

FN(x1)
...

FN(xk)


 .

Solution. Observe that sinceX1, X2, . . . , Xn are i.i.d., so are I(X1 ≤ x), I(X2 ≤ x), . . . , I(XN ≤
x). Therefore, by the Strong Law of Large Numbers, it follows that

F̂N =
1

N

N∑
i=1

I(Xi ≤ x)
a.s.−−→ E[I(Xi ≤ x)] = P (Xi ≤ x) = F (x).

For the limiting distribution, observe that
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√
N


F̂N(x1)

...

F̂N(xk)

−

FN(x1)
...

FN(xk)


 =

√
N

 1

N

N∑
i=1

I(Xi ≤ x1)
...

I(Xi ≤ xk)

−

FN(x1)
...

FN(xk)




=:
√
N

(
1

N

N∑
i=1

Ii − E[Ii]

)
=:

√
N
(
Ī − E[Ī]

) d−−→
CLT

N(0,E[(Ii − E[Ii])(Ii − E[Ii])
′]).

The (r, s)-th entry of the variance matrix Σ ≡ E[(Ii − E[Ii])(Ii − E[Ii])
′] can be neatly

expressed as

Σr,s = E[(I(Xi ≤ xr)− Fn(xr))(I(Xi ≤ xs)− Fn(xs))]

= E[I(Xi ≤ xr)I(Xi ≤ xs)]− E[I(Xi ≤ xr)]E[I(Xi ≤ xs)]

= E[I(Xi ≤ xr)I(Xi ≤ xs)]− FN(xr)FN(xs)

= E[I(Xi ≤ min{xr, xs})]− FN(xr)FN(xs)

= FN(min{xr, xs})− FN(min{xr, xs})FN(max{xr, xs})
= FN(min{xr, xs})[1− FN(max{xr, xs})].

Therefore,

Σ =


FN(x1)[1− FN(x1)] FN(x1)[1− FN(x2)] · · · FN(x1)[1− FN(xk)]
FN(x1)[1− FN(x2)] FN(x2)[1− FN(x2)] · · · FN(x2)[1− FN(xk)]

...
...

. . .
...

FN(x1)[1− FN(xk)] FN(x2)[1− FN(xk)] · · · FN(xk)[1− FN(xk)]

 .

9. [16.1, LNs] Show that tr(C ′D) = vec(C)′vec(D) and that tr(C ′D) = tr(DC ′) for p × q
matrices C and D.

Solution. Let ci and di denote the i-th columns of C and D, respectively. By partitioning
C =

[
c1 c2 · · · cq

]
and D =

[
d1 d2 · · · dq

]
we have

C ′D =


c′1
c′2
...
c′q

 [d1 d2 · · · dq
]
=


c′1d1 c′1d2 · · · c′1dq
c′2d1 c′2d2 · · · c′2dq
...

...
. . .

...
c′qd

′
1 c′qd2 · · · c′qdq


Thus

tr(C ′D) =

q∑
j=1

c′jdj =
[
c′1 c′2 · · · c′q

]

d1
d2
...
dq

 = vec(C)′vec(D).
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It is also easy to see that

tr(DC ′) = tr

(
q∑

j=1

djc
′
j

)
=

q∑
j=1

tr(djc
′
j) =

q∑
j=1

p∑
i=1

dijcij =

q∑
i=1

p∑
j=1

cijdij =

q∑
i=1

c′jdj = tr(C ′D),

where cij and dij denote the (i, j) entries of C and D, respectively.

10. [16.4, LNs] Let nij and mij be the (i, j) elements of N = X(X ′X)−1X ′ and M = I −N .

(a) Show that 0 ≤ nii ≤ 1 and 0 ≤ mii ≤ 1.

Solution. Let ei denote the i-th canonical vector. By spectral decomposition of N , we can
write

nii = e′iNei = e′iSΛS
′ei = (S ′ei)

′ΛS ′ei = v′Λv,

where Λ = diag(λ1, . . . , λn), S is orthogonal and v ≡ S ′ei. Here, we arrange eigenvalues in
increasing order: λ1 ≤ λ2 ≤ · · · ≤ λn. Observe that v′v = e′iSS

′ei = e′iei = 1, so by denoting
vi as the i-th element of v, we can write

λ1 = λ1v
′v =

n∑
i=1

λ1v
2
i ≤

n∑
i=1

λiv
2
i︸ ︷︷ ︸

v′Λv

≤
n∑

i=1

λnv
2
i = λnv

′v = λn.

Since N is idempotent, all of its eigenvalues are either 0 or 1. Therefore 0 ≤ nii ≤ 1. Since
mii = 1− nii, it also follows that 0 ≤ mii ≤ 1.

An alternative one-line proof is

0 = λ1 = min
x

x′Nx

x′x
≤

nii︷ ︸︸ ︷
e′iNei
e′iei︸︷︷︸
1

≤ max
x

x′Nx

x′x
= λn = 1.

Both inequalities follow from the Rayleigh quotient.

(b) Find all of the eigenvalues of N and M .

Solution. As argued in (a), since N is idempotent, all of its eigenvalues are either 0 or 1.
The same holds for M , as it is also idempotent. Here I shall prove this result. Let A be any
idempotent matrix. By eigendecomposition, A = HΛH−1, whence

AA = HΛH−1HΛH−1 = HΛΛH−1 = HΛ2H−1.

Therefore Λ = Λ2, and hence λi = λ2
i for all i = 1, . . . , n. Thus each λi must be equal to

either zero or one.

https://en.wikipedia.org/wiki/Rayleigh_quotient
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(c) Interpret geometrically the vectors Ny and My.

Solution. Let Y = Xβ + e. Observe that

NY = X(X ′X)−1X ′Y = Xβ̂OLS = Ŷ .

and MY = (I −X(X ′X)−1X ′)Y = Y −X(X ′x)−1X ′Y = Y −Xβ̂OLS = ê.

Therefore
NY +MY = Ŷ + ê. (= Y )

Observe that NY + MY = (N + M)Y = IY = Y , so Ŷ = NY is the “part” of Y that
is in the column space of X, while ê = MY is the “part” of Y that is orthogonal to the
column space of X. To visualize, examine Figure 4. This displays the case n = 3 and k = 2.
Displayed are three vectors Y , X1, and X2, which are each elements of R3. The plane created
by X1 and X2 is the column space of X. Regression-fitted values are linear combinations of
X1 and X2 and so lie on this plane. The fitted value Ŷ is the vector on this plane closest to
Y . The residual ê = Y − Ŷ is the difference between the two. The angle between the vectors
Ŷ and ê is 90o, and therefore they are orthogonal as shown.

Figure 4: Projection of Y onto X1 and X2.

(d) Show that the null space of N is the column space of M .

Solution. Let v ∈ Rn. If v is in the column space of M , then Mx = v for some x. Hence
Nv = NMx = 0. Thus v is in the null space of N . Conversely, if v is in the null space of
N , then Nv = 0 and hence −Nv = 0, whence v −Nv = v. Thus (I −N)v = v. Therefore
Mv = v, which means that v is in the column space of M .


