Statistics II	Problem Set 2
Professor: Marcelo J. Moreira	Solutions
TA: Luan Borelli	August 10, 2023

1. Show that tr(C'D) = vec(C)'vec(D) and that tr(C'D) = tr(DC') for $p \times q$ matrices C and D.

Solution. Let c_i and d_i denote the *i*-th columns of C and D, respectively. By partitioning $C = \begin{bmatrix} c_1 & c_2 & \cdots & c_q \end{bmatrix}$ and $D = \begin{bmatrix} d_1 & d_2 & \cdots & d_q \end{bmatrix}$ we have

$$C'D = \begin{bmatrix} c'_1 \\ c'_2 \\ \vdots \\ c'_q \end{bmatrix} \begin{bmatrix} d_1 & d_2 & \cdots & d_q \end{bmatrix} = \begin{bmatrix} c'_1d_1 & c'_1d_2 & \cdots & c'_1d_q \\ c'_2d_1 & c'_2d_2 & \cdots & c'_2d_q \\ \vdots & \vdots & \ddots & \vdots \\ c'_qd'_1 & c'_qd_2 & \cdots & c'_qd_q \end{bmatrix}$$

Thus

$$tr(C'D) = \sum_{j=1}^{q} c'_{j}d_{j} = \begin{bmatrix} c'_{1} & c'_{2} & \cdots & c'_{q} \end{bmatrix} \begin{bmatrix} d_{1} \\ d_{2} \\ \vdots \\ d_{q} \end{bmatrix} = vec(C)'vec(D).$$

It is also easy to see that

$$tr(DC') = tr\left(\sum_{j=1}^{q} d_j c'_j\right) = \sum_{j=1}^{q} tr(d_j c'_j) = \sum_{j=1}^{q} \sum_{i=1}^{p} d_{ij} c_{ij} = \sum_{i=1}^{q} \sum_{j=1}^{p} c_{ij} d_{ij} = \sum_{i=1}^{q} c'_j d_j = tr(C'D),$$

where c_{ij} and d_{ij} denote the (i, j) entries of C and D, respectively.

2. Let A and B be two symmetric and positive definite $k \times k$ matrices. Prove that $(I_k - A)$ is positive definite if and only if $(A^{-1} - I_k)$ is positive definite. Extend this result to show that (A - B) is positive definite if and only if $(B^{-1} - A^{-1})$ is positive definite.

Solution. For this proof we will be extensively using the well-known fact that if $X \succ 0$, then $C'XC \succ 0$ for any conformable C, where " $\succ 0$ " here reads "is positive definite". This is just a notation.

First, we shall prove that $I_k - A \succ 0 \iff A^{-1} - I_k \succ 0$.

(\implies) Since A is symmetric, so is A^{-1} . Therefore there exists $A^{-1/2}$ symmetric such that $A^{-1} = A^{-1/2}A^{-1/2}$. Notice that $I_k = A^{-1/2}AA^{-1/2}$.¹ We have that $A^{-1} - I_k = A^{-1/2}A^{-1/2} - A^{-1/2}AA^{-1/2} = A^{-1/2}(I_k - A)A^{-1/2} \succ 0$.

$$A^{-1/2}AA^{-1/2} = A^{-1/2}(A^{-1})^{-1}A^{-1/2} = A^{-1/2}(A^{-1/2}A^{-1/2})^{-1}A^{-1/2} = A^{-1/2}(A^{-1/2})^{-1}(A^{-1/2})^{-1}A^{-1/2} = I_k.$$

¹Observe that

The conclusion follows from the fact that $I_k - A \succ 0$, by hypothesis.

(\Leftarrow) Similarly, since A is symmetric, we can find $A^{1/2}$ such that $A = A^{1/2}A^{1/2}$. Notice that $I_k = A^{1/2}A^{-1}A^{1/2}$. We have that

$$A^{-1} - I_k = A^{1/2} A^{-1} A^{1/2} - A^{1/2} I_k A^{1/2} = A^{1/2} (A^{-1} - I_k) A^{1/2} \succ 0.$$

The conclusion follows from the fact that $A^{-1} - I_k \succ 0$, by hypothesis.

Now we shall use the above result to prove that $A - B \succ 0 \iff B^{-1} - A^{-1} \succ 0$.

 (\Longrightarrow) Observe that

$$A - B \succ 0 \implies A^{-1/2}(A - B)A^{-1/2} \succ 0 \implies I_k - A^{-1/2}BA^{-1/2} \succ 0.$$

From the previous result, this implies $A^{1/2}B^{-1}A^{1/2} - I_k \succ 0$. Therefore

$$B^{-1} - A^{-1} = A^{-1/2} A^{1/2} B^{-1} A^{1/2} A^{-1/2} - A^{-1/2} I_k A^{-1/2} = A^{-1/2} (A^{1/2} B^{-1} A^{1/2} - I_k) A^{-1/2} \succ 0.$$

(\Leftarrow) Since *B* is symmetric, there exists $B^{1/2}$ symmetric such that $B = B^{1/2}B^{1/2}$. We have that $B^{-1} - A^{-1} \succ 0$, whence $B^{1/2}(B^{-1} - A^{-1})B^{1/2} \succ 0$. Thus $I_k - B^{1/2}A^{-1}B^{1/2} \succ 0$.

The result from the first part implies $B^{-1/2}AB^{-1/2} - I_k \succ 0$. Therefore

$$A - B = B^{1/2} B^{-1/2} A B^{-1/2} B^{1/2} - B^{1/2} I_k B^{1/2} = B^{1/2} (B^{-1/2} A B^{-1/2} - I_k) B^{1/2} \succ 0.$$

- **3.** Let n_{ij} and m_{ij} be the (i, j) elements of $N = X(X'X)^{-1}X'$ and M = I N.
- (a) Show that $0 \le n_{ii} \le 1$ and $0 \le m_{ii} \le 1$.

Solution. Let e_i denote the *i*-th canonical vector. By spectral decomposition of N, we can write

$$n_{ii} = e'_i N e_i = e'_i S \Lambda S' e_i = (S'e_i)' \Lambda S' e_i = v' \Lambda v,$$

where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, S is orthogonal and $v \equiv S'e_i$. Here, we arrange eigenvalues in increasing order: $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Observe that $v'v = e'_iSS'e_i = e'_ie_i = 1$, so by denoting v_i as the *i*-th element of v, we can write

$$\lambda_1 = \lambda_1 v' v = \sum_{i=1}^n \lambda_1 v_i^2 \le \underbrace{\sum_{i=1}^n \lambda_i v_i^2}_{v' \wedge v} \le \sum_{i=1}^n \lambda_n v_i^2 = \lambda_n v' v = \lambda_n.$$

Since N is idempotent, all of its eigenvalues are either 0 or 1. Therefore $0 \le n_{ii} \le 1$. Since $m_{ii} = 1 - n_{ii}$, it also follows that $0 \le m_{ii} \le 1$.

An alternative one-line proof is

$$0 = \lambda_1 = \min_x \frac{x'Nx}{x'x} \le \underbrace{\underbrace{\frac{e_i'Ne_i}{e_i'e_i}}_{1}}_{1} \le \max_x \frac{x'Nx}{x'x} = \lambda_n = 1.$$

Both inequalities follow from the Rayleigh quotient.

(b) Find all of the eigenvalues of N and M.

Solution. As argued in (a), since N is idempotent, all of its eigenvalues are either 0 or 1. The same holds for M, as it is also idempotent. Here I shall prove this result. Let A be any idempotent matrix. By eigendecomposition, $A = H\Lambda H^{-1}$, whence

$$AA = H\Lambda H^{-1} H\Lambda H^{-1} = H\Lambda\Lambda H^{-1} = H\Lambda^2 H^{-1}.$$

Therefore $\Lambda = \Lambda^2$, and hence $\lambda_i = \lambda_i^2$ for all i = 1, ..., n. Thus each λ_i must be equal to either zero or one.

(c) Interpret geometrically the vectors Ny and My.

Solution. Let $Y = X\beta + e$. Observe that

$$NY = X(X'X)^{-1}X'Y = X\hat{\beta}_{OLS} = \hat{Y}.$$

and
$$MY = (I - X(X'X)^{-1}X')Y = Y - X(X'x)^{-1}X'Y = Y - X\hat{\beta}_{OLS} = \hat{e}.$$

Therefore

$$NY + MY = Y + \hat{e}. \quad (=Y)$$

Observe that NY + MY = (N + M)Y = IY = Y, so $\hat{Y} = NY$ is the "part" of Y that is in the column space of X, while $\hat{e} = MY$ is the "part" of Y that is orthogonal to the column space of X. To visualize, examine Figure 1. This displays the case n = 3 and k = 2. Displayed are three vectors Y, X_1 , and X_2 , which are each elements of \mathbb{R}^3 . The plane created by X_1 and X_2 is the column space of X. Regression-fitted values are linear combinations of X_1 and X_2 and so lie on this plane. The fitted value \hat{Y} is the vector on this plane closest to Y. The residual $\hat{e} = Y - \hat{Y}$ is the difference between the two. The angle between the vectors \hat{Y} and \hat{e} is 90°, and therefore they are orthogonal as shown.

Figure 1: Projection of Y onto X_1 and X_2 .

(d) Show that the null space of N is the column space of M.

Solution. Let $v \in \mathbb{R}^n$. If v is in the column space of M, then Mx = v for some x. Hence Nv = NMx = 0. Thus v is in the null space of N. Conversely, if v is in the null space of N, then Nv = 0 and hence -Nv = 0, whence v - Nv = v. Thus (I - N)v = v. Therefore Mv = v, which means that v is in the column space of M.

4. Suppose that the $n \times k$ matrix $X = (X_1, X_2)$ has full column rank. Let $X_2^* = M_1 X_2$ be the $n \times k_2$ matrix of residuals from the auxiliary regression of X_2 on X_1 . Show the following:

(a) $rank(X_2^*) = k_2$.

Solution. Being the annihilator matrix associated with X_1 , M_1 has rank $n - k_1$. Since X is full column rank, so is X_2 . Therefore X_2 has rank k_2 . It follows that

$$\operatorname{rank}(X_2^*) \le \min\{\operatorname{rank}(M_1), \operatorname{rank}(X_2)\} = \min\{n - k_1, k_2\}.$$

If $k_2 > n - k_1$, then $k_1 + k_2 = k > n$, contradicting X being full column rank. Thus we must have $k_2 \le n - k_1$, so

$$\operatorname{rank}(X_2^*) \le k_2.$$

Suppose by contradiction rank $(X_2^*) < k_2$. Then X_2^* is not full rank and hence there exists $\alpha = (\alpha_1, \dots, \alpha_{k_2}) \in \mathbb{R}^{k_2} \setminus \{\mathbf{0}\}$ such that

$$X_2^* \alpha = 0 \iff M_1 X_2 \alpha = 0 \iff X_2 \alpha = N_1 X_2 \alpha.$$

Since $N_1 X_2 \alpha$ is a projection of $X_2 \alpha$ onto the column space of X_1 , there exists $w \in \mathbb{R}^{k_1}$ such that $X_1 w = N_1 X_2 \alpha$. Therefore

$$X_2 \alpha = X_1 w \iff X_1 w - X_2 \alpha = 0 \iff \underbrace{\left[X_1 X_2 \right]}_X \underbrace{\left[w \\ -\alpha \right]}_{\equiv v} = 0 \iff X v = 0.$$

But since $v = (w, -\alpha) \neq 0$ (recall that $\alpha \neq 0$), this contradicts X being full rank.

(b) $N_X - N_1$ is symmetric and idempotent.

Solution. For symmetry, just notice that

$$[N_X - N_1]' = [X(X'X)^{-1}X' - X_1(X_1'X_1)^{-1}X_1']'$$

= $[X(X'X)^{-1}X']' - [X_1(X_1'X_1)^{-1}X_1']'$
= $X(X'X)^{-1}X' - X_1(X_1'X_1)^{-1}X_1' = N_X - N_1.$

For idempotency, write

$$N_X - N_1 = N_X - I + I - N_1 = I - N_1 - (I - N_X) = M_1 - M_X$$

and notice that

$$(M_1 - M_X)^2 = M_1^2 - M_1 M_X - M_X M_1 + M_X^2$$

(Idempotency) = $M_1 - M_1 M_X - M_X M_1 + M_X$
= $M_1 - M_X$.

The last equality follows from the fact that

$$M_1 M_X = M_X M_1 = M_X.$$

Indeed, since $M_X X_1 = \mathbf{0}_{n \times k_1}^{2}$,²

$$M_X M_1 = M_X - M_X X_1 (X_1' X_1)^{-1} X_1' = M_X,$$

and

$$M_1 M_X = M_X - X_1 (X'_1 X_1)^{-1} X'_1 M_X$$

= $M_X - X_1 (X'_1 X_1)^{-1} (M'_X X_1)'$
= $M_X - X_1 (X'_1 X_1)^{-1} (M_X X_1)' = M_X.$

 $^{2}X_{1}$ is in the column space of X, so this is expected. Observe that

 $MX = M[X_1:X_2] = [MX_1:MX_2] = \mathbf{0}_{n \times k} \iff MX_1 = \mathbf{0}_{n \times k_1} \text{ and } MX_2 = \mathbf{0}_{n \times k_2}.$

(c) $N_X - N_1 = N_{X_2^*}$, that is, the orthogonal projection on the span of X_2^* .

Solution. Define

$$A \equiv \begin{bmatrix} I_{k_1} & -(X_1'X_1)^{-1}X_1'X_2 \\ \mathbf{0} & I_{k_2} \end{bmatrix}$$

and consider the orthogonalizing transformation $Z \equiv XA$. Observe that

$$Z(Z'Z)^{-1}Z' = XA(A'X'XA)^{-1}A'X' = XAA^{-1}(X'X)^{-1}A'^{-1}A'X' = X(X'X)^{-1}X' = N_X.$$

We have

$$Z = XA = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} I_{k_1} & -(X'_1X_1)^{-1}X'_1X_2 \\ \mathbf{0} & I_{k_2} \end{bmatrix}$$
$$= \begin{bmatrix} X_1 & -X_1(X'_1X_1)^{-1}X'_1X_2 + X_2 \end{bmatrix}$$
$$= \begin{bmatrix} X_1 & X_2 - N_1X_2 \end{bmatrix}$$
$$= \begin{bmatrix} X_1 & M_1X_2 \end{bmatrix} = \begin{bmatrix} X_1 & X_2^* \end{bmatrix},$$

and hence

$$Z' = A'X' = \begin{bmatrix} X_1' \\ X_2^{*'} \end{bmatrix}.$$

Therefore

$$Z'Z = A'X'XA = \begin{bmatrix} X_1' \\ X_2'' \end{bmatrix} \begin{bmatrix} X_1 & X_2^* \end{bmatrix}$$
$$= \begin{bmatrix} X_1'X_1 & X_1'X_2^* \\ X_2''X_1 & X_2''X_2^* \end{bmatrix}$$
$$= \begin{bmatrix} X_1'X_1 & \mathbf{0} \\ \mathbf{0} & X_2''X_2^* \end{bmatrix},$$

where the last equality follows from the fact that X_1 is orthogonal to X_2^* . Indeed, $X_1'X_2^* = X_1'M_1X_2 = (M_1X_1)'X_2 = 0$. It follows that

$$(Z'Z)^{-1} = \begin{bmatrix} (X'_1X_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (X''_2X'_2)^{-1} \end{bmatrix}$$

and thus

$$N_X = Z(Z'Z)^{-1}Z' = \begin{bmatrix} X_1 & X_2^* \end{bmatrix} \begin{bmatrix} (X_1'X_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (X_2^{*'}X_2^*)^{-1} \end{bmatrix} \begin{bmatrix} X_1' \\ X_2^{*'} \end{bmatrix}$$
$$= X_1(X_1'X_1)^{-1}X_1' + X_2^*(X_2^{*'}X_2^*)^{-1}X_2^{*'}$$
$$= N_1 + N_{X_2^*},$$

whence $N_X - N_1 = N_{X_2^*}$, as desired.

5.1. [3.2, Hansen] Consider the OLS regression of the $n \times 1$ vector Y on the $n \times k$ matrix X. Consider an alternative set of regressors X = XC, where C is a $k \times k$ non-singular matrix. Thus, each column of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals from the regression of Y on X to the OLS estimates from the regression of Y on Z.

Solution. Let $\hat{\beta}$ and $\hat{\beta}$ denote the OLS estimators of Y on X and Y on XC, respectively. We have

$$\hat{\beta} = (X'X)^{-1}X'Y$$

and

$$\begin{split} \tilde{\beta} &= [(XC)'(XC)]^{-1}(XC)'Y \\ &= (C'X'XC)^{-1}C'X'Y \\ &= C^{-1}(X'X)^{-1}C'^{-1}C'X'Y \\ &= C^{-1}(X'X)^{-1}X'Y \\ &= C^{-1}\hat{\beta}. \end{split}$$

Let M and M_C denote the annihilator matrices associated with X and XC, respectively. Observe that

$$M_{C} = I_{n} - XC[(XC)'(XC)]^{-1}(CX)'$$

= $I_{n} - XC(C'X'XC)^{-1}C'X'$
= $I_{n} - XCC^{-1}(X'X)^{-1}C'^{-1}C'X'$
= $I_{n} - X(X'X)^{-1}X' = M.$

Therefore $\tilde{u} = M_C Y = M Y = \hat{u}$; that is, the residuals of both regressions are equal.

5.2. [3.12, Hansen] A dummy variable takes on only the values 0 and 1. It is used for categorical variables. Let D_1 and D_2 be vectors of 1's and 0's, with the *i*th element of D_1 equaling 1 and that of D_2 equaling 0 if the person is a man, and the reverse if the person is a woman. Suppose that there are n_1 men and n_2 women in the sample. Consider fitting the following three equations by OLS

$$Y = \mu + D_1\alpha_1 + D_2\alpha_2 + e \tag{1}$$

$$Y = D_1 \alpha_1 + D_2 \alpha_2 + e \tag{2}$$

$$Y = \mu + D_1 \phi + e \tag{3}$$

Can all three equations (1), (2), and (3) be estimated by OLS? Explain if not.

Solution. Equation (1) cannot be estimated by OLS. Notice that $\mathbf{1}_n = D_1 + D_2$, so we have perfect multicollinearity. This implies that the design matrix $X \equiv \begin{bmatrix} \mathbf{1}_n & D_1 & D_2 \end{bmatrix}$ is not full rank and hence the moment matrix X'X is not invertible. Therefore, the OLS estimator $(X'X)^{-1}X'Y$ is not well-defined. Equations (2) and (3) can be estimated by OLS, since $\begin{bmatrix} D_1 & D_2 \end{bmatrix}$ and $\begin{bmatrix} \mathbf{1}_n & D_1 \end{bmatrix}$ are both full rank.

(a) Compare regressions (2) and (3). Is one more general than the other? Explain the relationship between the parameters in (2) and (3).

Solution. No. Equations (2) and (3) convey the same information. Indeed, since $D_2 = 1 - D_1$, we can rewrite equation (2) as $Y = D_1 \alpha_1 + (1 - D_1) \alpha_2 + e = \alpha_2 + D_1 (\alpha_1 - \alpha_2) + e$. Therefore we have the relationship $\mu = \alpha_2$ and $\phi = \alpha_2 - \alpha_1$. Note that this is a one-to-one relationship. \Box

(b) Compute $\mathbf{1}'_n D_1$ and $\mathbf{1}'_n D_2$, where $\mathbf{1}_n$ is an $n \times 1$ vector of ones.

Solution. Let d_{1i} and d_{2i} denote the i^{th} elements of D_1 and D_2 , respectively. Since the i^{th} element of D_1 is one only if the person is a man and there are n_1 men in the sample,

$$\mathbf{1}_{n}^{\prime}D_{1} = \sum_{i=1}^{n} d_{1i} = n_{1}.$$

Analogously, since the i^{th} element of D_2 is one only if the person is a woman and there are n_2 women in the sample,

$$\mathbf{1}'_n D_2 = \sum_{i=1}^n d_{2i} = n_2.$$

8. [4.14, Hansen] Take a regression model $Y = X\beta + e$ with $\mathbb{E}[e|X] = 0$ and i.i.d. observations (Y_i, X_i) and scalar X. The parameter of interest is $\theta = \beta^2$. Consider the OLS estimators $\hat{\beta}$ and $\hat{\theta} = \hat{\beta}^2$.

(a) Find $\mathbb{E}[\hat{\theta}|X]$ using our knowledge of $\mathbb{E}[\hat{\beta}|X]$ and $V_{\hat{\beta}} = V[\hat{\beta}|X]$. Is $\hat{\theta}$ biased for θ ?

Solution. We have that $V[\hat{\beta}|X] = \mathbb{E}[\hat{\beta}^2|X] - \mathbb{E}[\hat{\beta}|X]^2 = \mathbb{E}[\hat{\theta}|X] - \beta^2 = \mathbb{E}[\hat{\theta}|X] - \theta$, whence it follows that $\mathbb{E}[\hat{\theta}|X] = \theta + V_{\hat{\beta}} \neq \theta$. Therefore $\hat{\theta}$ is biased for θ .

(b) Suggest an (approximate) biased-corrected estimator $\hat{\theta}^*$ using an estimator $\hat{V}_{\hat{\beta}}$ for $V_{\hat{\beta}}$.

Solution. $\hat{\theta}^* = \hat{\theta} - \hat{V}_{\hat{\beta}}$, where $\hat{V}_{\hat{\beta}}$ is some estimator for the covariance matrix $V_{\hat{\beta}}$. Recall that $V_{\hat{\beta}} = (X'X)^{-1}(X'DX)(X'X)^{-1}$, where $D = \text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$. If the squared errors were observable, we could define an ideal unbiased estimator for $V_{\hat{\beta}}$ as

$$\hat{V}^{\text{ideal}}_{\hat{\beta}} = (X'X)^{-1} (X'\tilde{D}X) (X'X)^{-1}$$

and obtain an *exact* biased-corrected estimator. Indeed,

$$\begin{split} \mathbb{E}[\hat{V}_{\hat{\beta}}^{\text{ideal}}|X] &= (X'X)^{-1} \left(\sum_{i=1}^{n} X_i X_i' \mathbb{E}[e_i^2|X]\right) (X'X)^{-1} \\ &= (X'X)^{-1} \left(\sum_{i=1}^{n} X_i X_i' \sigma_i^2\right) (X'X)^{-1} \\ &= (X'X)^{-1} (X'DX) (X'X)^{-1} = V_{\hat{\beta}}. \end{split}$$

But since the errors e_i^2 are unobserved, $\hat{V}_{\hat{\beta}}^{\text{ideal}}$ is not a feasible estimator, so we must resort to some approximation of $\hat{V}_{\hat{\beta}}^{\text{ideal}}$ — for example, by replacing the squared errors e_i^2 with the squared residuals \hat{e}_i^2 . In this sense, the suggested estimator $\hat{\theta}^*$ is, in general, just an *approximate* biased-corrected estimator for θ .

(c) For $\hat{\theta}^*$ to be potentially unbiased, which estimator for $V_{\hat{\beta}}$ is most appropriate? Under which conditions is $\hat{\theta}^*$ unbiased?

Solution. The HC2 estimator $\hat{V}_{\hat{\beta}}^{\text{HC2}} = (X'X)^{-1} (\sum_{i=1}^{n} (1-h_{ii})^{-1} X_i X_i' \hat{e}_i^2) (X'X)^{-1}$ is most appropriate, as it is unbiased for $V_{\hat{\beta}}$ under conditional homoskedasticity while remaining a valid estimator under heteroskedasticity. You can check that under homoskedasticity $\mathbb{E}[\hat{V}_{\hat{\beta}}^{\text{HC2}}|X] = V_{\hat{\beta}}$ and hence, when considering the biased-corrected estimator in (b) with this covariance estimator, $\mathbb{E}[\hat{\theta}^*|X] = \theta$.

9. [4.20, Hansen] Take the model in vector notation

$$Y = X\beta + e$$
$$\mathbb{E}[e|X] = 0$$
$$\mathbb{E}[ee'|X] = \Sigma.$$

Assume for simplicity that Σ is known. Consider the OLS and GLS estimators $\hat{\beta} = (X'X)^{-1}X'Y$ and $\tilde{\beta} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}Y$. Compute the (conditional) covariance between $\hat{\beta}$ and $\tilde{\beta}$: $\mathbb{E}[(\hat{\beta}-\beta)(\hat{\beta}-\beta)'|X]$. Compute the (conditional) covariance for $\hat{\beta}-\tilde{\beta}$: $\mathbb{E}[(\hat{\beta}-\tilde{\beta})(\hat{\beta}-\beta)'|X]$.

Solution. We know that $\hat{\beta} - \beta = (X'X)^{-1}X'e$ and $\tilde{\beta} - \beta = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}e$. Thus

$$\mathbb{E}[(\hat{\beta} - \beta)(\tilde{\beta} - \beta)'|X] = \mathbb{E}[(X'X)^{-1}X'ee'\Sigma^{-1}X(X'\Sigma^{-1}X)^{-1}|X]$$

= $(X'X)^{-1}X'\mathbb{E}[ee'|X]\Sigma^{-1}X(X'\Sigma^{-1}X)^{-1}$
= $(X'X)^{-1}X'\Sigma\Sigma^{-1}X(X'\Sigma^{-1}X)^{-1}$
= $(X'X)^{-1}X'X(X'\Sigma^{-1}X)^{-1}$
= $(X'\Sigma^{-1}X)^{-1}$.

Furthermore, we know that

$$\mathbb{E}[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X] = (X'X)^{-1}X'\Sigma X(X'X)^{-1}$$

and

$$\mathbb{E}[(\tilde{\beta} - \beta)(\tilde{\beta} - \beta)'|X] = (X'\Sigma^{-1}X)^{-1}.$$

Thus

$$\begin{split} \mathbb{E}[(\hat{\beta} - \tilde{\beta})(\hat{\beta} - \tilde{\beta})'|X] &= \mathbb{E}[((\hat{\beta} - \beta) - (\tilde{\beta} - \beta))((\hat{\beta} - \beta) - (\tilde{\beta} - \beta))'|X] \\ &= \mathbb{E}[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X] + \mathbb{E}[(\tilde{\beta} - \beta)(\tilde{\beta} - \beta)'|X] \\ &- \mathbb{E}[(\hat{\beta} - \beta)(\tilde{\beta} - \beta)'|X] - \mathbb{E}[(\tilde{\beta} - \beta)(\hat{\beta} - \beta)'|X] \\ &= (X'X)^{-1}X'\Sigma X(X'X)^{-1} + (X'\Sigma^{-1}X)^{-1} \\ &- (X'\Sigma^{-1}X)^{-1} - (X'\Sigma^{-1}X)^{-1} \\ &= (X'X)^{-1}X'\Sigma X(X'X)^{-1} - (X'\Sigma^{-1}X)^{-1} \\ &= V[\hat{\beta}] - V[\tilde{\beta}]. \end{split}$$

10. Consider the model $y = x_1\beta_1 + x_2\beta_2 + u$, where β_1 and β_2 are scalars, x_1 and x_2 are fixed vectors, and $u \sim N(0, \sigma^2 I_n)$. Let $\hat{\beta}_2$ be the OLS estimator for β_2 . Compute $V[\hat{\beta}_2]$ and show what happens when $(x'_1x_2)^2 \to ||x_1||^2 \cdot ||x_2||^2$. Comment on this result.

Solution. By FWL we have

$$\hat{\beta}_2 = (x_2' M_1 x_2)^{-1} x_2' M_1 y = \beta_2 + (x_2' M_1 x_2)^{-1} x_2' M_1 u.$$

Taking the variance we obtain

$$V[\hat{\beta}_2] = (x'_2 M_1 x_2)^{-1} x'_2 M_1 (\sigma^2 I_n) M_1 x_2 (x'_2 M_1 x_2)^{-1} = (x'_2 M_1 x_2)^{-1} \sigma^2$$

= $[x'_2 (I_n - x_1 (x'_1 x_1)^{-1} x'_1) x_2]^{-1} \sigma^2 = [x'_2 x_2 - x'_2 x_1 (x'_1 x_1)^{-1} x'_1 x_2]^{-1} \sigma^2$
= $\left[x'_2 x_2 - \frac{(x'_1 x_2)^2}{(x'_1 x_1)} \right]^{-1} \sigma^2 = \left[\|x_2\|^2 - \frac{(x'_1 x_2)^2}{\|x_1\|^2} \right]^{-1} \sigma^2.$

As
$$(x_1'x_2)^2 \to ||x_1||^2 ||x_2||^2$$
, $||x_2||^2 - \frac{(x_1'x_2)^2}{||x_1||^2} \to 0$ and hence $V[\hat{\beta}_2] \to \infty$.

11. Suppose two researchers are interested in the linear relation between the production of an agricultural product y and fertilizer z. They have quarterly data on these variables from m years and a total of n = 4m observations. The researchers are concerned with seasonal patterns in these variables. Researcher John proposes that first each variable is deseasonalized in the following way: calculate the seasonal means \bar{y}_1 , \bar{y}_2 , \bar{y}_3 , \bar{y}_4 , and express each observation as a deviation from its seasonal mean: $y_{th}^* = y_{th} - \bar{y}_h$, where y_{th} is the value of y for year t and quarter h, and $z_{th}^* = z_{th} - \bar{z}_h$, where z_{th} is the value of z for year t and quarter h. Then regress y^* on z^* . On the other hand, researcher Robert proposes to regress y on X and z, where $X = (x_1, x_2, x_3, x_4)$ and x_h is the h^{th} quarter seasonal dummy

$$x_h = \begin{cases} 1 & \text{ in quarter } h \\ 0 & \text{ otherwise} \end{cases}.$$

(a) Show that the two competing methods proposed by John and Robert yield the same estimator for the fertilizer effect z on y.

Solution. Partition data in quarters: $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4)$ and $\mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \mathbf{z}_4)$, where each \mathbf{y}_h and \mathbf{z}_h , h = 1, ..., 4 is $m \times 1$. Let $\mathbf{\bar{z}}_h = \mathbf{1}\mathbf{\bar{z}}_h$ and $\mathbf{\bar{y}}_h = \mathbf{1}\mathbf{\bar{y}}_h$ for h = 1, ..., h, where $\mathbf{1}$ is a $m \times 1$ vector of ones. John estimates

$$\mathbf{y}^* = \mathbf{z}^* \boldsymbol{\beta} + \mathbf{u},$$

or

$$\begin{bmatrix} \mathbf{y}_1 - \bar{\mathbf{y}}_1 \\ \mathbf{y}_2 - \bar{\mathbf{y}}_2 \\ \mathbf{y}_3 - \bar{\mathbf{y}}_3 \\ \mathbf{y}_4 - \bar{\mathbf{y}}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_1 - \bar{\mathbf{z}}_1 \\ \mathbf{z}_2 - \bar{\mathbf{z}}_2 \\ \mathbf{z}_3 - \bar{\mathbf{z}}_3 \\ \mathbf{z}_4 - \bar{\mathbf{z}}_4 \end{bmatrix} \boldsymbol{\beta} + \mathbf{u}.$$

The OLS estimator for β is given by

$$\hat{\beta} = (\mathbf{z}^{*\prime}\mathbf{z}^{*})^{-1}\mathbf{z}^{*\prime}\mathbf{y}^{*}.$$

 $\mathbf{y} = \mathbf{z}\beta_1 + X\beta_2 + \mathbf{u}.$

Robert estimates

By FWL,
$$\hat{\beta}_1 = (\mathbf{z}' M_X \mathbf{z})^{-1} \mathbf{z}' M_X y$$
, where $M_X = I - X (X'X)^{-1} X'$. Partition

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

where **1** and **0** are $m \times 1$ vectors of ones and zeros, respectively. Observe that

$$\begin{aligned} X'X &= \begin{bmatrix} 1' & 0' & 0' & 0' \\ 0' & 1' & 0' & 0' \\ 0' & 0' & 1' & 0' \\ 0' & 0' & 0' & 1' \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1'1 & 0'0 & 0'0 & 0'0 \\ 0'0 & 1'1 & 0'0 & 0'0 \\ 0'0 & 0'0 & 1'1 & 0'0 \\ 0'0 & 0'0 & 0'0 & 1'1 \end{bmatrix} = \begin{bmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & m \end{bmatrix} = I_4 m. \end{aligned}$$

Furthermore,

$$XX' = \begin{bmatrix} 11' & 00' & 00' & 00' \\ 00' & 11' & 00' & 00' \\ 00' & 00' & 11' & 00' \\ 00' & 00' & 00' & 11' \end{bmatrix}$$

Therefore

$$\begin{split} M_{X}\mathbf{z} &= \mathbf{z} - m^{-1}XX'\mathbf{z} \\ &= \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} - m^{-1} \begin{bmatrix} \mathbf{11'} & \mathbf{00'} & \mathbf{00'} & \mathbf{00'} \\ \mathbf{00'} & \mathbf{11'} & \mathbf{00'} & \mathbf{00'} \\ \mathbf{00'} & \mathbf{00'} & \mathbf{11'} & \mathbf{00'} \\ \mathbf{00'} & \mathbf{00'} & \mathbf{11'} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} - \begin{bmatrix} m^{-1}\mathbf{11'}\mathbf{z}_{1} \\ m^{-1}\mathbf{11'}\mathbf{z}_{2} \\ m^{-1}\mathbf{11'}\mathbf{z}_{3} \\ m^{-1}\mathbf{11'}\mathbf{z}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} - \begin{bmatrix} \mathbf{1}\overline{z}_{1} \\ \mathbf{1}\overline{z}_{2} \\ \mathbf{1}\overline{z}_{3} \\ \mathbf{1}\overline{z}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} - \begin{bmatrix} \mathbf{1}\overline{z}_{1} \\ \mathbf{1}\overline{z}_{2} \\ \mathbf{1}\overline{z}_{3} \\ \mathbf{1}\overline{z}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} - \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{4} \end{bmatrix} = \mathbf{z}^{*}, \end{split}$$

where by $z_{j,h}$ we denote the year-*j* quarter-*h* observation. Analogously, $M_X \mathbf{y} = \mathbf{y}^*$. Therefore

$$\hat{\beta}_1 = (\mathbf{z}' M_X \mathbf{z})^{-1} \mathbf{z}' M_X \mathbf{y}$$

= $(\mathbf{z}' M_X M_x \mathbf{z})^{-1} \mathbf{z}' M_X M_X \mathbf{y}$
= $[(M_X \mathbf{z})' M_x \mathbf{z}]^{-1} (M_X \mathbf{z})' M_X \mathbf{y}$
= $(\mathbf{z}^{*'} \mathbf{z}^{*})^{-1} \mathbf{z}^{*'} \mathbf{y}^{*} = \hat{\beta},$

whence it follows that the two competing methods proposed by John and Robert yield the same estimator for the effect of z on y.

(b) Mark instead suggests the intercept could be relevant, therefore they should regress on $\mathbf{1} = (1, \dots, 1)'$, X and Z. The researchers comment this would not be a good idea. Why?

Solution. Notice that $\mathbf{1}_{4m} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4$, so if we were to add an intercept we would have perfect multicollinearity. This would imply that the full design matrix $D \equiv \begin{bmatrix} \mathbf{1}_{4m} & \mathbf{z} & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 \end{bmatrix}$ would not be full rank and hence the moment matrix D'D would not be invertible. Therefore, the OLS estimator $(D'D)^{-1}D'\mathbf{y}$ would not be well-defined. \Box

(c) Now Mark and Robert are interested in testing the hypothesis that there is no seasonal pattern in the data. Mark proposes to regress y on X only and test if the coefficient of X equals to zero. Robert, however, proposes to regress y on X and z and test if the coefficient of X equals to zero. Which of the two methods would you choose? Explain your answer.

Solution. As \mathbf{z} is relevant for explaining \mathbf{y} , omitting it from the regression would imply omitted variable bias. So, in principle, I would prefer Robert's suggestion. We must, however, always be aware of the bias-variance tradeoff when deciding whether or not to include new regressors in a model.

(d) The research assistant loads the database on Stata. The database contains the variables y, x_1, x_2, x_3, x_4, z described above. Write the commands he would use to run the regression of y on x_1, x_2, x_3, x_4, z .

Solution. regress y x1 x2 x3 x4 z, noconstant

12. For each of the following statements, indicate whether it is true or false, and justify your answer.

(a) The random variable t = b'b is an unbiased estimator of the parameter $\beta'\beta$.

Solution. False. $\mathbb{E}[b'b] > \mathbb{E}[b]'\mathbb{E}[b] = \beta'\beta$, by Jensen's inequality and unbiasedness of b. \Box

(b) Since $\hat{y} = Ny$, it follows that $y = N^{-1}\hat{y}$.

Solution. False. N has dimensions $n \times n$ and rank k. Therefore it is not full rank and hence is not invertible.

(c) Since $\mathbb{E}[\hat{y}] = \mathbb{E}[y]$, the sum of the residuals is 0.

Solution. False. The sum of the residuals can be written as

$$\mathbf{1}_{n}'My = (M\mathbf{1}_{n})'y,$$

where $\mathbf{1}_n$ is a *n*-dimensional vector of ones. If $\mathbf{1}_n$ is not in the column space of X, which is something that could perfectly well happen even though $\mathbb{E}[\hat{y}] = \mathbb{E}[y]$, the above expression may not be zero. One could easily construct several numerical examples. Take, for instance, X = (2, 1) and Y = (4, 7). We have $\hat{\beta} = (X'X)^{-1}X'y = 3$ and $\hat{u} = Y - X\hat{\beta} = (-2, 4)$. Therefore $\sum_{i=1}^2 \hat{u}_i = 2 \neq 0$. If, however, $\mathbf{1}_n$ is in the column space of X (which is the case when the regression contains a constant regressor, for example), then $M\mathbf{1}_n = 0$ and therefore the sum of the residuals is necessarily zero.

(d) If b_1 and b_2 are the first two elements of b, $t_1 = b_1 + b_2$, and $t_2 = b_1 - b_2$, then $V(t_1) \ge V(t_2)$.

Solution. False. Consider the k = 2 case. We have that $V[t_1] = V[b_1] + V[b_2] + 2Cov(b_1, b_2)$ and $V[t_2] = V[b_1] + V[b_2] - 2Cov(b_1, b_2)$. Therefore $V[t_1] - V[t_2] = 4Cov(b_1, b_2)$. One could easily find an example in which $Cov(b_1, b_2) < 0$. Take for instance $X = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and assume $u \sim N(0, I_2)$. We have

$$(X'X)^{-1}X' = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix},$$

and hence

$$b = \beta + (X'X)^{-1}X'u = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

Therefore,

$$b_1 = \beta_1 + u_1 - u_2$$
 and $b_2 = \beta_2 - u_1 + 2u_2$.

It follows that $V[b_1] = 2$, $V[b_2] = 5$, $V[t_1] = V[\beta_1 + \beta_2 + u_2] = 1$, and $V[t_2] = V[\beta_1 - \beta_2 + 2u_1 - 3u_2] = 13$. Therefore $V[t_2] > V[t_1]$. Note that $Cov(b_1, b_2) = -3$.

(e) The LS coefficients b = Ay are uncorrelated with the residuals e = My.

Solution. In general, this statement is false. However, if we impose homoskedasticity, it becomes true. Let $A \equiv (X'X)^{-1}X'$. Assume X to be nonstochastic and let Σ denote the covariance matrix of u. Observe that $b - \beta = Au$ and $\mathbb{E}[e] = 0$. Therefore, the covariance between b and e is given by

$$\mathbb{E}[(b-\beta)(e-\mathbb{E}[e])'] = \mathbb{E}[Aue'] = \mathbb{E}[Auu'M']$$

= $A\mathbb{E}[uu']M$
= $(X'X)^{-1}X'\Sigma M$
= $(X'X)^{-1}X'\Sigma(I_n - X(X'X)^{-1}X')$
= $(X'X)^{-1}X'\Sigma - (X'X)^{-1}X'\Sigma X(X'X)^{-1}X' \neq 0$

If we impose homoskedasticity, then $\Sigma = I_n \sigma^2$ and hence

$$\mathbb{E}[(b-\beta)(e-\mathbb{E}[e])'] = (X'X)^{-1}X'\sigma^2 - (X'X)^{-1}X'X(X'X)^{-1}X'\sigma^2$$
$$= (X'X)^{-1}X'\sigma^2 - (X'X)^{-1}X'\sigma^2 = 0.$$

- 6	-	-	-	٦.
				L
				L
				L

13. Prove Theorem 4.6 of Hansen (2021).

Solution. Different versions of Hansen's book have different Theorems 4.6. If you considered the MSFE theorem, the proof is in the text, just above the statement. If you've considered the Generalized Gauss-Markov Theorem, see the Technical Proofs section of the most recent versions of the book (for example, the 2022 version). It seems that Theorem 4.5 of the newer versions is equivalent to Theorem 4.6 of the older versions of the book.

14. Prove Theorems 5.4 and 5.7 of Hansen (2021).

Solution. Check Hansen's book. The proofs are in the text, just above the statements. \Box