
Statistics II Problem Set 2
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli August 10, 2023

1. Show that tr(C ′D) = vec(C)′vec(D) and that tr(C ′D) = tr(DC ′) for p × q matrices C
and D.

Solution. Let ci and di denote the i-th columns of C and D, respectively. By partitioning
C =

[
c1 c2 · · · cq

]
and D =

[
d1 d2 · · · dq

]
we have

C ′D =


c′1
c′2
...
c′q

 [d1 d2 · · · dq
]
=


c′1d1 c′1d2 · · · c′1dq
c′2d1 c′2d2 · · · c′2dq
...

...
. . .

...
c′qd

′
1 c′qd2 · · · c′qdq


Thus

tr(C ′D) =

q∑
j=1

c′jdj =
[
c′1 c′2 · · · c′q

]

d1
d2
...
dq

 = vec(C)′vec(D).

It is also easy to see that

tr(DC ′) = tr

(
q∑

j=1

djc
′
j

)
=

q∑
j=1

tr(djc
′
j) =

q∑
j=1

p∑
i=1

dijcij =

q∑
i=1

p∑
j=1

cijdij =

q∑
i=1

c′jdj = tr(C ′D),

where cij and dij denote the (i, j) entries of C and D, respectively.

2. Let A and B be two symmetric and positive definite k × k matrices. Prove that (Ik − A)
is positive definite if and only if (A−1 − Ik) is positive definite. Extend this result to show
that (A−B) is positive definite if and only if (B−1 − A−1) is positive definite.

Solution. For this proof we will be extensively using the well-known fact that if X ≻ 0, then
C ′XC ≻ 0 for any conformable C, where “≻ 0” here reads “is positive definite”. This is just
a notation.

First, we shall prove that Ik − A ≻ 0 ⇐⇒ A−1 − Ik ≻ 0.

( =⇒ ) Since A is symmetric, so is A−1. Therefore there exists A−1/2 symmetric such that
A−1 = A−1/2A−1/2. Notice that Ik = A−1/2AA−1/2.1 We have that

A−1 − Ik = A−1/2A−1/2 − A−1/2AA−1/2 = A−1/2(Ik − A)A−1/2 ≻ 0.

1Observe that

A−1/2AA−1/2 = A−1/2(A−1)−1A−1/2 = A−1/2(A−1/2A−1/2)−1A−1/2 = A−1/2(A−1/2)−1(A−1/2)−1A−1/2 = Ik.
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The conclusion follows from the fact that Ik − A ≻ 0, by hypothesis.

( ⇐= ) Similarly, since A is symmetric, we can find A1/2 such that A = A1/2A1/2. Notice
that Ik = A1/2A−1A1/2. We have that

A−1 − Ik = A1/2A−1A1/2 − A1/2IkA
1/2 = A1/2(A−1 − Ik)A

1/2 ≻ 0.

The conclusion follows from the fact that A−1 − Ik ≻ 0, by hypothesis.

Now we shall use the above result to prove that A−B ≻ 0 ⇐⇒ B−1 − A−1 ≻ 0.

( =⇒ ) Observe that

A−B ≻ 0 =⇒ A−1/2(A−B)A−1/2 ≻ 0 =⇒ Ik − A−1/2BA−1/2 ≻ 0.

From the previous result, this implies A1/2B−1A1/2 − Ik ≻ 0. Therefore

B−1 −A−1 = A−1/2A1/2B−1A1/2A−1/2 −A−1/2IkA
−1/2 = A−1/2(A1/2B−1A1/2 − Ik)A

−1/2 ≻ 0.

( ⇐= ) Since B is symmetric, there exists B1/2 symmetric such that B = B1/2B1/2. We
have that B−1 − A−1 ≻ 0, whence B1/2(B−1 − A−1)B1/2 ≻ 0. Thus Ik −B1/2A−1B1/2 ≻ 0.

The result from the first part implies B−1/2AB−1/2 − Ik ≻ 0. Therefore

A−B = B1/2B−1/2AB−1/2B1/2 −B1/2IkB
1/2 = B1/2(B−1/2AB−1/2 − Ik)B

1/2 ≻ 0.

3. Let nij and mij be the (i, j) elements of N = X(X ′X)−1X ′ and M = I −N .

(a) Show that 0 ≤ nii ≤ 1 and 0 ≤ mii ≤ 1.

Solution. Let ei denote the i-th canonical vector. By spectral decomposition of N , we can
write

nii = e′iNei = e′iSΛS
′ei = (S ′ei)

′ΛS ′ei = v′Λv,

where Λ = diag(λ1, . . . , λn), S is orthogonal and v ≡ S ′ei. Here, we arrange eigenvalues in
increasing order: λ1 ≤ λ2 ≤ · · · ≤ λn. Observe that v′v = e′iSS

′ei = e′iei = 1, so by denoting
vi as the i-th element of v, we can write

λ1 = λ1v
′v =

n∑
i=1

λ1v
2
i ≤

n∑
i=1

λiv
2
i︸ ︷︷ ︸

v′Λv

≤
n∑

i=1

λnv
2
i = λnv

′v = λn.

Since N is idempotent, all of its eigenvalues are either 0 or 1. Therefore 0 ≤ nii ≤ 1. Since
mii = 1− nii, it also follows that 0 ≤ mii ≤ 1.
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An alternative one-line proof is

0 = λ1 = min
x

x′Nx

x′x
≤

nii︷ ︸︸ ︷
e′iNei
e′iei︸︷︷︸
1

≤ max
x

x′Nx

x′x
= λn = 1.

Both inequalities follow from the Rayleigh quotient.

(b) Find all of the eigenvalues of N and M .

Solution. As argued in (a), since N is idempotent, all of its eigenvalues are either 0 or 1.
The same holds for M , as it is also idempotent. Here I shall prove this result. Let A be any
idempotent matrix. By eigendecomposition, A = HΛH−1, whence

AA = HΛH−1HΛH−1 = HΛΛH−1 = HΛ2H−1.

Therefore Λ = Λ2, and hence λi = λ2
i for all i = 1, . . . , n. Thus each λi must be equal to

either zero or one.

(c) Interpret geometrically the vectors Ny and My.

Solution. Let Y = Xβ + e. Observe that

NY = X(X ′X)−1X ′Y = Xβ̂OLS = Ŷ .

and MY = (I −X(X ′X)−1X ′)Y = Y −X(X ′x)−1X ′Y = Y −Xβ̂OLS = ê.

Therefore
NY +MY = Ŷ + ê. (= Y )

Observe that NY + MY = (N + M)Y = IY = Y , so Ŷ = NY is the “part” of Y that
is in the column space of X, while ê = MY is the “part” of Y that is orthogonal to the
column space of X. To visualize, examine Figure 1. This displays the case n = 3 and k = 2.
Displayed are three vectors Y , X1, and X2, which are each elements of R3. The plane created
by X1 and X2 is the column space of X. Regression-fitted values are linear combinations of
X1 and X2 and so lie on this plane. The fitted value Ŷ is the vector on this plane closest to
Y . The residual ê = Y − Ŷ is the difference between the two. The angle between the vectors
Ŷ and ê is 90o, and therefore they are orthogonal as shown.

https://en.wikipedia.org/wiki/Rayleigh_quotient
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Figure 1: Projection of Y onto X1 and X2.

(d) Show that the null space of N is the column space of M .

Solution. Let v ∈ Rn. If v is in the column space of M , then Mx = v for some x. Hence
Nv = NMx = 0. Thus v is in the null space of N . Conversely, if v is in the null space of
N , then Nv = 0 and hence −Nv = 0, whence v −Nv = v. Thus (I −N)v = v. Therefore
Mv = v, which means that v is in the column space of M .

4. Suppose that the n×k matrix X = (X1, X2) has full column rank. Let X∗
2 = M1X2 be the

n× k2 matrix of residuals from the auxiliary regression of X2 on X1. Show the following:

(a) rank(X∗
2 ) = k2.

Solution. Being the annihilator matrix associated with X1, M1 has rank n− k1. Since X is
full column rank, so is X2. Therefore X2 has rank k2. It follows that

rank(X∗
2 ) ≤ min{rank(M1), rank(X2)} = min{n− k1, k2}.

If k2 > n− k1, then k1+ k2 = k > n, contradicting X being full column rank. Thus we must
have k2 ≤ n− k1, so

rank(X∗
2 ) ≤ k2.

Suppose by contradiction rank(X∗
2 ) < k2. Then X∗

2 is not full rank and hence there exists
α = (α1, · · · , αk2) ∈ Rk2\{0} such that

X∗
2α = 0 ⇐⇒ M1X2α = 0 ⇐⇒ X2α = N1X2α.
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Since N1X2α is a projection of X2α onto the column space of X1, there exists w ∈ Rk1 such
that X1w = N1X2α. Therefore

X2α = X1w ⇐⇒ X1w −X2α = 0 ⇐⇒
[
X1 X2

]︸ ︷︷ ︸
X

[
w
−α

]
︸ ︷︷ ︸

≡v

= 0 ⇐⇒ Xv = 0.

But since v = (w,−α) ̸= 0 (recall that α ̸= 0), this contradicts X being full rank.

(b) NX −N1 is symmetric and idempotent.

Solution. For symmetry, just notice that

[NX −N1]
′ = [X(X ′X)−1X ′ −X1(X

′
1X1)

−1X ′
1]

′

= [X(X ′X)−1X ′]′ − [X1(X
′
1X1)

−1X ′
1]

′

= X(X ′X)−1X ′ −X1(X
′
1X1)

−1X ′
1 = NX −N1.

For idempotency, write

NX −N1 = NX − I + I −N1 = I −N1 − (I −NX) = M1 −MX

and notice that

(M1 −MX)
2 = M2

1 −M1MX −MXM1 +M2
X

(Idempotency) = M1 −M1MX −MXM1 +MX

= M1 −MX .

The last equality follows from the fact that

M1MX = MXM1 = MX .

Indeed, since MXX1 = 0n×k1 ,
2

MXM1 = MX −MXX1(X
′
1X1)

−1X ′
1 = MX ,

and

M1MX = MX −X1(X
′
1X1)

−1X ′
1MX

= MX −X1(X
′
1X1)

−1(M ′
XX1)

′

= MX −X1(X
′
1X1)

−1(MXX1)
′ = MX .

2X1 is in the column space of X, so this is expected. Observe that

MX = M [X1 : X2] = [MX1 : MX2] = 0n×k ⇐⇒ MX1 = 0n×k1
and MX2 = 0n×k2

.
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(c) NX - N1 = NX∗
2
, that is, the orthogonal projection on the span of X∗

2 .

Solution. Define

A ≡
[
Ik1 −(X ′

1X1)
−1X ′

1X2

0 Ik2

]
and consider the orthogonalizing transformation Z ≡ XA. Observe that

Z(Z ′Z)−1Z ′ = XA(A′X ′XA)−1A′X ′ = XAA−1(X ′X)−1A′−1A′X ′ = X(X ′X)−1X ′ = NX .

We have

Z = XA =
[
X1 X2

] [Ik1 −(X ′
1X1)

−1X ′
1X2

0 Ik2

]
=
[
X1 −X1(X

′
1X1)

−1X ′
1X2 +X2

]
=
[
X1 X2 −N1X2

]
=
[
X1 M1X2

]
=
[
X1 X∗

2

]
,

and hence

Z ′ = A′X ′ =

[
X ′

1

X∗
2
′

]
.

Therefore

Z ′Z = A′X ′XA =

[
X ′

1

X∗
2
′

] [
X1 X∗

2

]
=

[
X ′

1X1 X ′
1X

∗
2

X∗
2
′X1 X∗

2
′X∗

2

]
=

[
X ′

1X1 0
0 X∗

2
′X∗

2

]
,

where the last equality follows from the fact that X1 is orthogonal to X∗
2 . Indeed, X

′
1X

∗
2 =

X ′
1M1X2 = (M1X1)

′X2 = 0. It follows that

(Z ′Z)−1 =

[
(X ′

1X1)
−1 0

0 (X∗
2
′X∗

2 )
−1

]
and thus

NX = Z(Z ′Z)−1Z ′ =
[
X1 X∗

2

] [(X ′
1X1)

−1 0
0 (X∗

2
′X∗

2 )
−1

] [
X ′

1

X∗
2
′

]
= X1(X

′
1X1)

−1X ′
1 +X∗

2 (X
∗
2
′X∗

2 )
−1X∗

2
′

= N1 +NX∗
2
,

whence NX −N1 = NX∗
2
, as desired.
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5.1. [3.2, Hansen] Consider the OLS regression of the n × 1 vector Y on the n × k matrix
X. Consider an alternative set of regressors X = XC, where C is a k × k non-singular
matrix. Thus, each column of Z is a mixture of some of the columns of X. Compare the
OLS estimates and residuals from the regression of Y on X to the OLS estimates from the
regression of Y on Z.

Solution. Let β̂ and β̃ denote the OLS estimators of Y on X and Y on XC, respectively.
We have

β̂ = (X ′X)−1X ′Y

and

β̃ = [(XC)′(XC)]−1(XC)′Y

= (C ′X ′XC)−1C ′X ′Y

= C−1(X ′X)−1C ′−1C ′X ′Y

= C−1(X ′X)−1X ′Y

= C−1β̂.

Let M and MC denote the annihilator matrices associated with X and XC, respectively.
Observe that

MC = In −XC[(XC)′(XC)]−1(CX)′

= In −XC(C ′X ′XC)−1C ′X ′

= In −XCC−1(X ′X)−1C ′−1C ′X ′

= In −X(X ′X)−1X ′ = M.

Therefore ũ = MCY = MY = û; that is, the residuals of both regressions are equal.

5.2. [3.12, Hansen] A dummy variable takes on only the values 0 and 1. It is used for
categorical variables. Let D1 and D2 be vectors of 1’s and 0’s, with the ith element of D1

equaling 1 and that of D2 equaling 0 if the person is a man, and the reverse if the person is
a woman. Suppose that there are n1 men and n2 women in the sample. Consider fitting the
following three equations by OLS

Y = µ+D1α1 +D2α2 + e (1)

Y = D1α1 +D2α2 + e (2)

Y = µ+D1ϕ+ e (3)

Can all three equations (1), (2), and (3) be estimated by OLS? Explain if not.
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Solution. Equation (1) cannot be estimated by OLS. Notice that 1n = D1 +D2, so we have
perfect multicollinearity. This implies that the design matrix X ≡

[
1n D1 D2

]
is not full

rank and hence the moment matrix X ′X is not invertible. Therefore, the OLS estimator
(X ′X)−1X ′Y is not well-defined. Equations (2) and (3) can be estimated by OLS, since[
D1 D2

]
and

[
1n D1

]
are both full rank.

(a) Compare regressions (2) and (3). Is one more general than the other? Explain the
relationship between the parameters in (2) and (3).

Solution. No. Equations (2) and (3) convey the same information. Indeed, sinceD2 = 1−D1,
we can rewrite equation (2) as Y = D1α1+(1−D1)α2+e = α2+D1(α1−α2)+e. Therefore we
have the relationship µ = α2 and ϕ = α2−α1. Note that this is a one-to-one relationship.

(b) Compute 1′
nD1 and 1′

nD2, where 1n is an n× 1 vector of ones.

Solution. Let d1i and d2i denote the ith elements of D1 and D2, respectively. Since the ith

element of D1 is one only if the person is a man and there are n1 men in the sample,

1′
nD1 =

n∑
i=1

d1i = n1.

Analogously, since the ith element of D2 is one only if the person is a woman and there are
n2 women in the sample,

1′
nD2 =

n∑
i=1

d2i = n2.

8. [4.14, Hansen] Take a regression model Y = Xβ + e with E[e|X] = 0 and i.i.d. ob-
servations (Yi, Xi) and scalar X. The parameter of interest is θ = β2. Consider the OLS
estimators β̂ and θ̂ = β̂2.

(a) Find E[θ̂|X] using our knowledge of E[β̂|X] and Vβ̂ = V [β̂|X]. Is θ̂ biased for θ?

Solution. We have that V [β̂|X] = E[β̂2|X] − E[β̂|X]2 = E[θ̂|X] − β2 = E[θ̂|X] − θ, whence
it follows that E[θ̂|X] = θ + Vβ̂ ̸= θ. Therefore θ̂ is biased for θ.

(b) Suggest an (approximate) biased-corrected estimator θ̂∗ using an estimator V̂β̂ for Vβ̂.

Solution. θ̂∗ = θ̂− V̂β̂, where V̂β̂ is some estimator for the covariance matrix Vβ̂. Recall that

Vβ̂ = (X ′X)−1(X ′DX)(X ′X)−1, where D = diag(σ2
1, . . . , σ

2
n). If the squared errors were

observable, we could define an ideal unbiased estimator for Vβ̂ as

V̂ ideal
β̂

= (X ′X)−1(X ′D̃X)(X ′X)−1

https://en.wikipedia.org/wiki/Multicollinearity
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and obtain an exact biased-corrected estimator. Indeed,

E[V̂ ideal
β̂

|X] = (X ′X)−1

(
n∑

i=1

XiX
′
iE[e2i |X]

)
(X ′X)−1

= (X ′X)−1

(
n∑

i=1

XiX
′
iσ

2
i

)
(X ′X)−1

= (X ′X)−1(X ′DX)(X ′X)−1 = Vβ̂.

But since the errors e2i are unobserved, V̂ ideal
β̂

is not a feasible estimator, so we must resort

to some approximation of V̂ ideal
β̂

— for example, by replacing the squared errors e2i with

the squared residuals ê2i . In this sense, the suggested estimator θ̂∗ is, in general, just an
approximate biased-corrected estimator for θ.

(c) For θ̂∗ to be potentially unbiased, which estimator for Vβ̂ is most appropriate? Under

which conditions is θ̂∗ unbiased?

Solution. The HC2 estimator V̂ HC2
β̂

= (X ′X)−1 (
∑n

i=1(1− hii)
−1XiX

′
i ê

2
i ) (X

′X)−1 is most

appropriate, as it is unbiased for Vβ̂ under conditional homoskedasticity while remaining
a valid estimator under heteroskedasticity. You can check that under homoskedasticity
E[V̂ HC2

β̂
|X] = Vβ̂ and hence, when considering the biased-corrected estimator in (b) with

this covariance estimator, E[θ̂∗|X] = θ.

9. [4.20, Hansen] Take the model in vector notation

Y = Xβ + e

E[e|X] = 0

E[ee′|X] = Σ.

Assume for simplicity that Σ is known. Consider the OLS and GLS estimators β̂ = (X ′X)−1X ′Y
and β̃ = (X ′Σ−1X)−1X ′Σ−1Y . Compute the (conditional) covariance between β̂ and β̃:
E[(β̂−β)(β̃−β)′|X]. Compute the (conditional) covariance for β̂− β̃: E[(β̂− β̃)(β̂−β)′|X].

Solution. We know that β̂ − β = (X ′X)−1X ′e and β̃ − β = (X ′Σ−1X)−1X ′Σ−1e. Thus

E[(β̂ − β)(β̃ − β)′|X] = E[(X ′X)−1X ′ee′Σ−1X(X ′Σ−1X)−1|X]

= (X ′X)−1X ′E[ee′|X]Σ−1X(X ′Σ−1X)−1

= (X ′X)−1X ′ΣΣ−1X(X ′Σ−1X)−1

= (X ′X)−1X ′X(X ′Σ−1X)−1

= (X ′Σ−1X)−1.

Furthermore, we know that

E[(β̂ − β)(β̂ − β)′|X] = (X ′X)−1X ′ΣX(X ′X)−1



Statistics II Problem Set 2 - Page 10 of 14 August 10, 2023

and
E[(β̃ − β)(β̃ − β)′|X] = (X ′Σ−1X)−1.

Thus

E[(β̂ − β̃)(β̂ − β̃)′|X] = E[((β̂ − β)− (β̃ − β))((β̂ − β)− (β̃ − β))′|X]

= E[(β̂ − β)(β̂ − β)′|X] + E[(β̃ − β)(β̃ − β)′|X]

− E[(β̂ − β)(β̃ − β)′|X]− E[(β̃ − β)(β̂ − β)′|X]

= (X ′X)−1X ′ΣX(X ′X)−1 + (X ′Σ−1X)−1

− (X ′Σ−1X)−1 − (X ′Σ−1X)−1

= (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= V [β̂]− V [β̃].

10. Consider the model y = x1β1 + x2β2 + u, where β1 and β2 are scalars, x1 and x2 are
fixed vectors, and u ∼ N(0, σ2In). Let β̂2 be the OLS estimator for β2. Compute V [β̂2] and
show what happens when (x′

1x2)
2 → ∥x1∥2 · ∥x2∥2. Comment on this result.

Solution. By FWL we have

β̂2 = (x′
2M1x2)

−1x′
2M1y = β2 + (x′

2M1x2)
−1x′

2M1u.

Taking the variance we obtain

V [β̂2] = (x′
2M1x2)

−1x′
2M1(σ

2In)M1x2(x
′
2M1x2)

−1 = (x′
2M1x2)

−1σ2

=
[
x′
2(In − x1(x

′
1x1)

−1x′
1)x2]

−1σ2 = [x′
2x2 − x′

2x1(x
′
1x1)

−1x′
1x2

]−1
σ2

=

[
x′
2x2 −

(x′
1x2)

2

(x′
1x1)

]−1

σ2 =

[
∥x2∥2 −

(x′
1x2)

2

∥x1∥2

]−1

σ2.

As (x′
1x2)

2 −→ ∥x1∥2∥x2∥2, ∥x2∥2 − (x′
1x2)2

∥x1∥2 −→ 0 and hence V [β̂2] → ∞.

11. Suppose two researchers are interested in the linear relation between the production of
an agricultural product y and fertilizer z. They have quarterly data on these variables from
m years and a total of n = 4m observations. The researchers are concerned with seasonal
patterns in these variables. Researcher John proposes that first each variable is deseasonalized
in the following way: calculate the seasonal means ȳ1, ȳ2, ȳ3, ȳ4, and express each observation
as a deviation from its seasonal mean: y∗th = yth − ȳh, where yth is the value of y for year
t and quarter h, and z∗th = zth − z̄h, where zth is the value of z for year t and quarter h.
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Then regress y∗ on z∗. On the other hand, researcher Robert propoes to regress y on X and
z, where X = (x1, x2, x3, x4) and xh is the hth quarter seasonal dummy

xh =

{
1 in quarter h

0 otherwise
.

(a) Show that the two competing methods proposed by John and Robert yield the same esti-
mator for the fertilizer effect z on y.

Solution. Partition data in quarters: y = (y1,y2,y3,y4) and z = (z1, z2, z3, z4), where each
yh and zh, h = 1, ..., 4 is m × 1. Let z̄h = 1z̄h and ȳh = 1ȳh for h = 1, . . . , h, where 1 is a
m× 1 vector of ones. John estimates

y∗ = z∗β + u,

or 
y1 − ȳ1

y2 − ȳ2

y3 − ȳ3

y4 − ȳ4

 =


z1 − z̄1
z2 − z̄2
z3 − z̄3
z4 − z̄4

 β + u.

The OLS estimator for β is given by

β̂ = (z∗′z∗)−1z∗′y∗.

Robert estimates
y = zβ1 +Xβ2 + u.

By FWL, β̂1 = (z′MXz)
−1z′MXy, where MX = I −X(X ′X)−1X ′. Partition

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

where 1 and 0 are m× 1 vectors of ones and zeros, respectively. Observe that

X ′X =


1′ 0′ 0′ 0′

0′ 1′ 0′ 0′

0′ 0′ 1′ 0′

0′ 0′ 0′ 1′



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


1′1 0′0 0′0 0′0
0′0 1′1 0′0 0′0
0′0 0′0 1′1 0′0
0′0 0′0 0′0 1′1

 =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 = I4m.
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Furthermore,

XX ′ =


11′ 00′ 00′ 00′

00′ 11′ 00′ 00′

00′ 00′ 11′ 00′

00′ 00′ 00′ 11′

 .

Therefore

MXz = z−m−1XX ′z

=


z1
z2
z3
z4

−m−1


11′ 00′ 00′ 00′

00′ 11′ 00′ 00′

00′ 00′ 11′ 00′

00′ 00′ 00′ 11′



z1
z2
z3
z4



=


z1
z2
z3
z4

−


m−111′z1
m−111′z2
m−111′z3
m−111′z4

 =


z1
z2
z3
z4

−


1m−1

∑m
j=1 zj,1

1m−1
∑m

j=1 zj,2
1m−1

∑m
j=1 zj,3

1m−1
∑m

j=1 zj,4



=


z1
z2
z3
z4

−


1z̄1
1z̄2
1z̄3
1z̄4

 =


z1
z2
z3
z4

−


z̄1
z̄2
z̄3
z̄4

 = z∗,

where by zj,h we denote the year-j quarter-h observation. Analogously,MXy = y∗. Therefore

β̂1 = (z′MXz)
−1z′MXy

= (z′MXMxz)
−1z′MXMXy

= [(MXz)
′Mxz]

−1(MXz)
′MXy

= (z∗′z∗)−1z∗′y∗ = β̂,

whence it follows that the two competing methods proposed by John and Robert yield the
same estimator for the effect of z on y.

(b) Mark instead suggests the intercept could be relevant, therefore they should regress on
1 = (1, . . . , 1)′, X and Z. The researchers comment this would not be a good idea. Why?

Solution. Notice that 14m = x1 + x2 + x3 + x4, so if we were to add an intercept we
would have perfect multicollinearity. This would imply that the full design matrix D ≡[
14m z x1 x2 x3 x4

]
would not be full rank and hence the moment matrix D′D would

not be invertible. Therefore, the OLS estimator (D′D)−1D′y would not be well-defined.

(c) Now Mark and Robert are interested in testing the hypothesis that there is no seasonal
pattern in the data. Mark proposes to regress y on X only and test if the coefficient of X
equals to zero. Robert, however, proposes to regress y on X and z and test if the coefficient
of X equals to zero. Which of the two methods would you choose? Explain your answer.

https://en.wikipedia.org/wiki/Multicollinearity
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Solution. As z is relevant for explaining y, omitting it from the regression would imply
omitted variable bias. So, in principle, I would prefer Robert’s suggestion. We must, however,
always be aware of the bias-variance tradeoff when deciding whether or not to include new
regressors in a model.

(d) The research assistant loads the database on Stata. The database contains the variables
y, x1, x2, x3, x4, z described above. Write the commands he would use to run the regression
of y on x1, x2, x3, x4, z.

Solution. regress y x1 x2 x3 x4 z, noconstant

12. For each of the following statements, indicate whether it is true or false, and justify
your answer.

(a) The random variable t = b′b is an unbiased estimator of the parameter β′β.

Solution. False. E[b′b] > E[b]′E[b] = β′β, by Jensen’s inequality and unbiasedness of b.

(b) Since ŷ = Ny, it follows that y = N−1ŷ.

Solution. False. N has dimensions n×n and rank k. Therefore it is not full rank and hence
is not invertible.

(c) Since E[ŷ] = E[y], the sum of the residuals is 0.

Solution. False. The sum of the residuals can be written as

1′
nMy = (M1n)

′y,

where 1n is a n-dimensional vector of ones. If 1n is not in the column space of X, which is
something that could perfectly well happen even though E[ŷ] = E[y], the above expression
may not be zero. One could easily construct several numerical examples. Take, for instance,
X = (2, 1) and Y = (4, 7). We have β̂ = (X ′X)−1X ′y = 3 and û = Y − Xβ̂ = (−2, 4).
Therefore

∑2
i=1 ûi = 2 ̸= 0. If, however, 1n is in the column space of X (which is the case

when the regression contains a constant regressor, for example), then M1n = 0 and therefore
the sum of the residuals is necessarily zero.

(d) If b1 and b2 are the first two elements of b, t1 = b1 + b2, and t2 = b1 − b2, then
V (t1) ≥ V (t2).

Solution. False. Consider the k = 2 case. We have that V [t1] = V [b1] + V [b2] + 2Cov(b1, b2)
and V [t2] = V [b1] + V [b2]− 2Cov(b1, b2). Therefore V [t1]− V [t2] = 4Cov(b1, b2). One could

easily find an example in which Cov(b1, b2) < 0. Take for instance X =

[
2 1
1 1

]
and assume

u ∼ N(0, I2). We have

(X ′X)−1X ′ =

[
1 −1
−1 2

]
,

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://www.stata.com/manuals13/rregress.pdf
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and hence

b = β + (X ′X)−1X ′u =

[
β1

β2

]
+

[
1 −1
−1 2

] [
u1

u2

]
.

Therefore,
b1 = β1 + u1 − u2 and b2 = β2 − u1 + 2u2.

It follows that V [b1] = 2, V [b2] = 5, V [t1] = V [β1 + β2 + u2] = 1, and V [t2] = V [β1 − β2 +
2u1 − 3u2] = 13. Therefore V [t2] > V [t1]. Note that Cov(b1, b2) = −3.

(e) The LS coefficients b = Ay are uncorrelated with the residuals e = My.

Solution. In general, this statement is false. However, if we impose homoskedasticity, it
becomes true. Let A ≡ (X ′X)−1X ′. Assume X to be nonstochastic and let Σ denote the
covariance matrix of u. Observe that b − β = Au and E[e] = 0. Therefore, the covariance
between b and e is given by

E[(b− β)(e− E[e])′] = E[Aue′] = E[Auu′M ′]

= AE[uu′]M

= (X ′X)−1X ′ΣM

= (X ′X)−1X ′Σ(In −X(X ′X)−1X ′)

= (X ′X)−1X ′Σ− (X ′X)−1X ′ΣX(X ′X)−1X ′ ̸= 0.

If we impose homoskedasticity, then Σ = Inσ
2 and hence

E[(b− β)(e− E[e])′] = (X ′X)−1X ′σ2 − (X ′X)−1X ′X(X ′X)−1X ′σ2

= (X ′X)−1X ′σ2 − (X ′X)−1X ′σ2 = 0.

13. Prove Theorem 4.6 of Hansen (2021).

Solution. Different versions of Hansen’s book have different Theorems 4.6. If you considered
the MSFE theorem, the proof is in the text, just above the statement. If you’ve considered
the Generalized Gauss-Markov Theorem, see the Technical Proofs section of the most recent
versions of the book (for example, the 2022 version). It seems that Theorem 4.5 of the newer
versions is equivalent to Theorem 4.6 of the older versions of the book.

14. Prove Theorems 5.4 and 5.7 of Hansen (2021).

Solution. Check Hansen’s book. The proofs are in the text, just above the statements.


