
Statistics II Problem Set 2
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli August 07, 2024

1. [16.3, LNs] The matrix X =
[
X1 X2

]
is full-column rank. Use the fact that X1 is

orthogonal to X∗
2 = M1X2 to find

(X ′X)−1 =

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]−1

and sums and products of the terms (X ′
1X1)

−1, X ′
1X2, and (X∗

2
′X∗

2 )
−1.

Solution. I shall use the result that for a conformable partitioning A =

[
A1 A2

A3 A4

]
,

A−1 =

[
A−1

1 +A−1
1 A2(A4 −A3A

−1
1 A2)

−1A3A
−1
1 −A−1

1 A2(A4 −A3A
−1
1 A2)

−1

−(A4 −A3A
−1
1 A2)

−1A3A
−1
1 (A4 −A3A

−1
1 A2)

−1

]
,

provided A1 and the Schur complement of A1 in A, A4 −A3A
−1
1 A2, are invertible. Define

the Schur complement of X ′
1X1 in (X ′X)−1 as

S ≡ X ′
2X2 −X ′

2X1(X
′
1X1)

−1X ′
1X2 = X ′

2X2 −X ′
2N1X2

= X ′
2(I −N1)X2 = X ′

2M1X2 = X ′
2M1M1X2 = X∗

2
′X∗

2 .

Then we can write

(X ′X)−1 =

[
(X ′

1X1)
−1 + (X ′

1X1)
−1(X ′

1X2)S
−1(X ′

2X1)(X
′
1X1)

−1 −(X ′
1X1)

−1(X ′
1X2)S

−1

−S−1X ′
2X1(X

′
1X1)

−1 S−1

]
=

[
(X ′

1X1)
−1[I + (X ′

1X2)S
−1(X ′

1X2)
′(X ′

1X1)
−1] −(X ′

1X1)
−1(X ′

1X2)S
−1

−[(X ′
1X1)

−1(X ′
1X2)S

−1]′ S−1

]
,

as desired.

Alternatively, notice that X ′
1M1 = X ′

1(I − X1(X
′
1X1)

−1X ′
1) = X ′

1 − X ′
1X1(X

′
1X1)

−1X ′
1 =

X ′
1 −X ′

1 = 0. Thus X ′
1X

∗
2 = X ′

1M1X2 = 0. Therefore,([
X1 X∗

2

]′ [
X1 X∗

2

])−1

=

[
X ′

1X1 X ′
1X

∗
2

X∗
2
′X1 X∗

2
′X∗

2

]−1

=

[
X ′

1X1 0
0 X∗

2
′X∗

2

]−1

=

[
(X ′

1X1)
−1 0

0 (X∗
2
′X∗

2 )
−1

]
.

Now, observe that[
X1 X∗

2

] [Ik1 (X ′
1X1)

−1X ′
1X2

0 Ik2

]
=
[
X1 X1(X

′
1X1)

−1X ′
1X2 +X∗

2

]
=
[
X1 N1X2 +M1X2

]
=
[
X1 (N1 +N1)X2

]
=
[
X1 X2

]
,

https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Schur_complement
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and let A ≡ (X ′
1X1)

−1X ′
1X2. Then we can write

(X ′X)−1 =

[([
X1 X∗

2

] [Ik1 A
0 Ik2

])′([
X1 X∗

2

] [Ik1 A
0 Ik2

])]−1

=

[[
Ik1 A
0 Ik2

]′ [
X1 X∗

2

]′ [
X1 X∗

2

] [Ik1 A
0 Ik2

]]−1

=

[[
Ik1 0′

A′
12 Ik2

] [
X1 X∗

2

]′ [
X1 X∗

2

] [Ik1 A
0 Ik2

]]−1

=

[
Ik1 A
0 Ik2

]−1 [[
X1 X∗

2

]′ [
X1 X∗

2

]]−1
[
Ik1 0′

A′
12 Ik2

]−1

=

[
Ik1 −A
0 Ik2

] [
(X ′

1X1)
−1 0

0 (X∗
2
′X∗

2 )
−1

] [
Ik1 0′

−A′
12 Ik2

]
=

[
(X ′

1X1)
−1 −A(X∗

2
′X∗

2 )
−1

0 (X∗
2
′X∗

2 )
−1

] [
Ik1 0′

−A′
12 Ik2

]
=

[
(X ′

1X1)
−1 + A(X∗

2
′X∗

2 )
−1A′ −A(X∗

2
′X∗

2 )
−1

−(X∗
2
′X∗

2 )
−1A′ (X∗

2
′X∗

2 )
−1

]

=

[
(X ′

1X1)
−1 + (X ′

1X1)
−1X ′

1X2(X
∗
2
′X∗

2 )
−1X ′

2X1(X
′
1X1)

−1 −(X ′
1X1)

−1X ′
1X2(X

∗
2
′X∗

2 )
−1

−(X∗
2
′X∗

2 )
−1X ′

2X1(X
′
1X1)

−1 (X∗
2
′X∗

2 )
−1

]
.

We obtained the same result, but this time without using the 2× 2 block inversion formula.

2. [16.7, LNs] Let X and y be

X = [X1, X2] =


1 2
1 4
1 3
1 5
1 2

 and y =


14
17
8
16
3

 .

Calculate the following:

(a) Q = X ′X, |X ′X|, and Q−1.

Solution.

Q =

[
5 16
16 58

]
, |X ′X| = 34, and Q−1 =

[
29
17

− 8
17

− 8
17

5
34

]
.

(b) A = Q−1X ′ and β̂ = Ay.
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Solution.

A =

[
13
17

− 3
17

5
17

−11
17

13
17

− 3
17

2
17

− 1
34

9
34

− 3
17

]
and β̂ =

[
2
3

]
.

(c) N and ŷ = Ny.

Solution.

N =


7
17

1
17

4
17

− 2
17

7
17

1
17

5
17

3
17

7
17

1
17

4
17

3
17

7
34

5
34

4
17

− 2
17

7
17

5
34

23
34

− 2
17

7
17

1
17

4
17

− 2
17

7
17

 and ŷ =


8
14
11
17
8

 .

(d) M and e = My.

Solution.

M =


10
17

− 1
17

− 4
17

2
17

− 7
17

− 1
17

12
17

− 3
17

− 7
17

− 1
17

− 4
17

− 3
17

27
34

− 5
34

− 4
17

2
17

− 7
17

− 5
34

11
34

2
17

− 7
17

− 1
17

− 4
17

2
17

10
17

 and e =


6
3
−3
−1
−5

 .

(e) tr(N) and tr(M).

Solution.
tr(N) = 2 and tr(M) = 3.

(f) X∗
2
′X∗

2 , X
∗
2
′X2, X

∗
2
′y∗, and X∗

2
′y.

Solution.

X∗
2
′X∗

2 =
34

5
, X∗

2
′X2 =

34

5
, X∗

2
′y∗ =

102

5
, and X∗

2
′y =

102

5
.

(g) (X∗
2
′X∗

2 )
−1X∗

2
′y, and compare your answer with item (b).

Solution. As in item (b) we obtained β̂2 = 3, by the FWL theorem the answer must be 3.

(X∗
2
′X∗

2 )
−1X∗

2
′y = 3.
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3. [16.2, LNs] Let A and B be two symmetric and positive definite k × k matrices. Prove
that A−B is positive definite if and only if (B−1−A−1) is positive definite. Apply this result
to compare (X∗

2
′X∗

2 )
−1 and (X ′

2X2)
−1.

Solution. For this proof we will be extensively using the well-known fact that if X ≻ 0, then
C ′XC ≻ 0 for any conformable C, where “≻ 0” here reads “is positive definite”. This is just
a notation. First, we shall prove that Ik − A ≻ 0 ⇐⇒ A−1 − Ik ≻ 0.

( =⇒ ) Since A is symmetric, so is A−1. Therefore there exists A−1/2 symmetric such that
A−1 = A−1/2A−1/2. Notice that Ik = A−1/2AA−1/2.1 We have that

A−1 − Ik = A−1/2A−1/2 − A−1/2AA−1/2 = A−1/2(Ik − A)A−1/2 ≻ 0.

The conclusion follows from the fact that Ik − A ≻ 0, by hypothesis.

( ⇐= ) Similarly, since A is symmetric, we can find A1/2 such that A = A1/2A1/2. Notice
that Ik = A1/2A−1A1/2. We have that

Ik − A = A1/2A−1A1/2 − A1/2IkA
1/2 = A1/2(A−1 − Ik)A

1/2 ≻ 0.

The conclusion follows from the fact that A−1 − Ik ≻ 0, by hypothesis.

Now we shall use the above result to prove that A−B ≻ 0 ⇐⇒ B−1 − A−1 ≻ 0.

( =⇒ ) Observe that

A−B ≻ 0 =⇒ A−1/2(A−B)A−1/2 ≻ 0 =⇒ Ik − A−1/2BA−1/2 ≻ 0.

From the previous result, this implies A1/2B−1A1/2 − Ik ≻ 0. Therefore

B−1 −A−1 = A−1/2A1/2B−1A1/2A−1/2 −A−1/2IkA
−1/2 = A−1/2(A1/2B−1A1/2 − Ik)A

−1/2 ≻ 0.

( ⇐= ) Since B is symmetric, there exists B1/2 symmetric such that B = B1/2B1/2. We
have that B−1 − A−1 ≻ 0, whence B1/2(B−1 − A−1)B1/2 ≻ 0. Thus Ik −B1/2A−1B1/2 ≻ 0.

The result from the first part implies B−1/2AB−1/2 − Ik ≻ 0. Therefore

A−B = B1/2B−1/2AB−1/2B1/2 −B1/2IkB
1/2 = B1/2(B−1/2AB−1/2 − Ik)B

1/2 ≻ 0.

Observe that a similar proof to that presented in this exercise could be employed to show
that the same result holds for positive semidefiniteness. Having this in mind, let’s compare
(X∗

2
′X∗

2 )
−1 and (X ′

2X2)
−1. Observe that X∗

2
′X∗

2 = X ′
2M1X

∗
2 = X ′

2(I − N1)X2 = X ′
2X2 −

1Observe that

A−1/2AA−1/2 = A−1/2(A−1)−1A−1/2 = A−1/2(A−1/2A−1/2)−1A−1/2 = A−1/2(A−1/2)−1(A−1/2)−1A−1/2 = Ik.
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X ′
2N1X2. Thus X

′
2X2−X∗

2
′X∗

2 = X ′
2N1X2. Since N1 is positive semidefinite,2 it follows that

X ′
2N1X2 is positive semidefinite. Therefore (X ′

2X2)
−1 − (X∗

2
′X∗

2 )
−1 is positive semidefinite.

4. [16.8, LNs] The regression includes an intercept, and the first column of X is x1 = 1, the
vector of ones. Let M1 = I − x1(x

′
1x1)

−1x′
1.

(a) Show that M1y is the vector of residuals from a regression of y on the vector of ones
alone.

Solution. A regression of y on the vector of ones alone gives

β̂ = (1′1)−11′y.

Thus the vector of residuals is

y − 1β̂ = y − 1(1′1)−11′y = (I − 1(1′1)−11′)y = (I − x1(x
′
1x1)

−1x′
1)y = M1y.

(b) Show that y′M1y =
∑

i(yi − ȳ)2.

Solution. Observe that

y′M1y = y′(I − x1(x
′
1x1)

−1x′
1)y = y′(I − 1(1′1)−11′)y = y′y − y′1(1′1)−11′y = y′y − (1′y)′(1′1)−11′y

=
n∑

i=1

y2i − n−1

(
n∑

i=1

yi

)2

=
n∑

i=1

y2i − ȳ

(
n∑

i=1

yi

)
=

n∑
i=1

(y2i − ȳyi) =
n∑

i=1

(y2i − 2ȳyi + ȳyi)

=
n∑

i=1

(y2i − 2ȳyi) + ȳ
n∑

i=1

yi =
n∑

i=1

(y2i − 2ȳyi) + nȳȳ =
n∑

i=1

(y2i − 2ȳyi + ȳ2)

=
∑
i

(yi − ȳ)2.

as desired.

(c) Suppose the classical regression model applies to E[y] = Xβ. Show that E [
∑

i(yi − ȳ)2] =
(n − 1)σ2 + β′

2X
∗
2
′X∗

2β2, where β2 is the (k − 1) × 1 subvector that remains when the first
element of β is deleted, X2 is the n× (k − 1) submatrix that remains when the first column
of X is deleted, and X∗

2 = M1X2.

2Recall that all the eigenvalues of the annihilator matrix are either zero or one; thus, nonnegative. A
matrix whose all eigenvalues are nonnegative is always positive semidefinite.
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Solution. Observe that

y′M1y = (1β1 +X2β2 + u)′M1(1β1 +X2β2 + u)

= (β′
11

′ + β′
2X

′
2 + u′)M1M1(1β1 +X2β2 + u)

= (β′
11

′M1 + β′
2X

′
2M1 + u′M1)(M11β1 +M1X2β2 +M1u)

= (β′
2X

∗
2
′ + u′M1)(X

∗
2β2 +M1u)

= β′
2X

∗
2
′X∗

2β2 + β′
2X

∗
2
′M1u+ u′M ′

1X
∗
2β2 + u′M1u.

Thus,

E[y′M1y] = E

[∑
i

(yi − ȳ)2

]
= β′

2X
∗
2
′X∗

2β2 + E[u′M1u] = β′
2X

∗
2
′X∗

2β2 + E[tr(u′M1u)].

Now, recalling that the trace of MX is n− k, where k = dim(X), we obtain

E[tr(uu′M1)] = tr(E[uu′]M1) = tr(Inσ
2M1) = tr(M1)σ

2 = (n− 1)σ2,

whence it follows that E[y′M1y] = β′
2X

∗
2
′X∗

2β2 + (n− 1)σ2, as desired.

(d) Consider R̄2 = 1 − [
∑

i e
2
i /(n− k)] / [

∑
i(yi − ȳ)2/(n− 1)]. Evaluate the claim that the

denominator
∑

i(yi − ȳ)2/(n− 1) is an unbiased estimator of the variance of the dependent
variable.

Solution. The claim is false. Observe that

E

[∑
i

(yi − ȳ)2/(n− 1)

]
=

β′
2X

∗
2
′X∗

2β2

n− 1
+ σ2 ̸= σ2.

5 [16.11, LNs] Consider the linear regression model

y = Xβ + u,

where E[u|X] = 0 and V (u|x) = σ2In. There are two regressors, so the i-th row of X is
given by xt = (x1,t, x2,t). Let

b =

[
b1
b2

]
=

(
n∑

t=1

xtx
′
t

)−1 n∑
t=1

xtyt

be the OLS coefficient of a regression of y on X.

(a) Let b∗1 =
(∑n

t=1 x
2
1,t

)−1∑n
t=1 x1,tyt be the coefficient of a regression of y on x1. Show that

b∗1 = b1 + Fb2.
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Solution. Write yt = x1b1 + x2,tb2 + ut and

b∗1 =

(
n∑

t=1

x2
1,t

)−1 n∑
t=1

x1,t(x1,tb1 + x2,tb2 + ut)

= b1 +

(
n∑

t=1

x2
1,t

)−1 n∑
t=1

x1,tx2,tb2 +

(
n∑

t=1

x2
1,t

)−1 n∑
t=1

x1,tut

= b1 + Fb2,

where F ≡
(∑n

t=1 x
2
1,t

)−1∑n
t=1 x1,tx2,t. The last equality follows from the fact that ut = My

and Mx1,t = 0.

(b)We are given the following estimated OLS coefficients of the dependent variables (columns)
and explanatory variables (rows):

y x1 x2

y 1
x1 1
x2 1

Find the estimator β̂ = (X ′X)−1X ′y.

Solution. It seems that there is information missing in the table. If we assume that the empty
entries mean that coefficients are zero, then x′

1y = x′
2y = x′

2x1 = 0. ThusX ′y = (x′
1y, x

′
2y)

′ =
(0, 0)′ and hence β̂ = (0, 0)′. If, instead, we only assume that the OLS coefficients of x2 in
x1 or x1 in x2 are zero, then we have x′

2x1 = x′
1x2 = 0. Therefore,

(X ′X)−1 =

([
x′
1

x′
2

] [
x1 x2

])−1

=

[
x′
1x1 x′

1x2

x′
2x1 x′

2x2

]−1

=

[
x′
1x1 0
0 x′

2x2

]−1

=

[
(x′

1x1)
−1 0

0 (x′
2x2)

−1

]
,

whence it follows that

β̂ = (X ′X)−1X ′y =

[
(x′

1x1)
−1 0

0 (x′
2x2)

−1

] [
x′
1y

x′
2y

]
=

[
(x′

1x1)
−1x′

1y
(x′

2x2)
−1x′

2y

]
=

[
b1 + F1b2
b2 + F2b1

]
=

[
b1
b2

]
,

where, akin to item (a), F1 = (x′
1x1)

−1 x′
1x2 = 0 and F2 = (x′

2x2)
−1 x′

2x1 = 0.

6. Suppose two researchers are interested in the linear relation between the production of
an agricultural product y and fertilizer z. They have quarterly data on these variables from
m years and a total of n = 4m observations. The researchers are concerned with seasonal
patterns in these variables. Researcher John proposes that first each variable is deseasonalized
in the following way: calculate the seasonal means ȳ1, ȳ2, ȳ3, ȳ4, and express each observation
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as a deviation from its seasonal mean: y∗th = yth − ȳh, where yth is the value of y for year
t and quarter h, and z∗th = zth − z̄h, where zth is the value of z for year t and quarter h.
Then regress y∗ on z∗. On the other hand, researcher Robert propoes to regress y on X and
z, where X = (x1, x2, x3, x4) and xh is the hth quarter seasonal dummy

xh =

{
1 in quarter h

0 otherwise
.

(a) Show that the two competing methods proposed by John and Robert yield the same esti-
mator for the fertilizer effect z on y.

Solution. Partition data in quarters: y = (y1,y2,y3,y4) and z = (z1, z2, z3, z4), where each
yh and zh, h = 1, ..., 4 is m × 1. Let z̄h = 1z̄h and ȳh = 1ȳh for h = 1, . . . , h, where 1 is a
m× 1 vector of ones. John estimates

y∗ = z∗β + u,

or 
y1 − ȳ1

y2 − ȳ2

y3 − ȳ3

y4 − ȳ4

 =


z1 − z̄1
z2 − z̄2
z3 − z̄3
z4 − z̄4

 β + u.

The OLS estimator for β is given by

β̂ = (z∗′z∗)−1z∗′y∗.

Robert estimates
y = zβ1 +Xβ2 + u.

By FWL, β̂1 = (z′MXz)
−1z′MXy, where MX = I −X(X ′X)−1X ′. Partition

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

where 1 and 0 are m× 1 vectors of ones and zeros, respectively. Observe that

X ′X =


1′ 0′ 0′ 0′

0′ 1′ 0′ 0′

0′ 0′ 1′ 0′

0′ 0′ 0′ 1′



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


1′1 0′0 0′0 0′0
0′0 1′1 0′0 0′0
0′0 0′0 1′1 0′0
0′0 0′0 0′0 1′1

 =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 = I4m.
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Furthermore,

XX ′ =


11′ 00′ 00′ 00′

00′ 11′ 00′ 00′

00′ 00′ 11′ 00′

00′ 00′ 00′ 11′

 .

Therefore

MXz = z−m−1XX ′z

=


z1
z2
z3
z4

−m−1


11′ 00′ 00′ 00′

00′ 11′ 00′ 00′

00′ 00′ 11′ 00′

00′ 00′ 00′ 11′



z1
z2
z3
z4



=


z1
z2
z3
z4

−


m−111′z1
m−111′z2
m−111′z3
m−111′z4

 =


z1
z2
z3
z4

−


1m−1

∑m
j=1 zj,1

1m−1
∑m

j=1 zj,2
1m−1

∑m
j=1 zj,3

1m−1
∑m

j=1 zj,4



=


z1
z2
z3
z4

−


1z̄1
1z̄2
1z̄3
1z̄4

 =


z1
z2
z3
z4

−


z̄1
z̄2
z̄3
z̄4

 = z∗,

where by zj,h we denote the year-j quarter-h observation. Analogously,MXy = y∗. Therefore

β̂1 = (z′MXz)
−1z′MXy

= (z′MXMxz)
−1z′MXMXy

= [(MXz)
′Mxz]

−1(MXz)
′MXy

= (z∗′z∗)−1z∗′y∗ = β̂,

whence it follows that the two competing methods proposed by John and Robert yield the
same estimator for the effect of z on y.

(b) Mark instead suggests the intercept could be relevant, therefore they should regress on
1 = (1, . . . , 1)′, X and Z. The researchers comment this would not be a good idea. Why?

Solution. Notice that 14m = x1 + x2 + x3 + x4, so if we were to add an intercept we
would have perfect multicollinearity. This would imply that the full design matrix D ≡[
14m z x1 x2 x3 x4

]
would not be full rank and hence the moment matrix D′D would

not be invertible. Therefore, the OLS estimator (D′D)−1D′y would not be well-defined.

(c) Now Mark and Robert are interested in testing the hypothesis that there is no seasonal
pattern in the data. Mark proposes to regress y on X only and test if the coefficient of X
equals to zero. Robert, however, proposes to regress y on X and z and test if the coefficient
of X equals to zero. Which of the two methods would you choose? Explain your answer.

https://en.wikipedia.org/wiki/Multicollinearity
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Solution. As z is relevant for explaining y, omitting it from the regression would imply
omitted variable bias. So, in principle, I would prefer Robert’s suggestion. We must, however,
always be aware of the bias-variance tradeoff when deciding whether or not to include new
regressors in a model.

(d) The research assistant loads the database on Stata. The database contains the variables
y, x1, x2, x3, x4, z described above. Write the commands he would use to run the regression
of y on x1, x2, x3, x4, z.

Solution. regress y x1 x2 x3 x4 z, noconstant

7. [16.30, LNs] Consider the model

yi = x′
iβ + ui

where (x′
i, ui) are iid with ui|xi have the density f(u) ∈ C2 (with support −∞ < u < ∞).

Assume that

E[U ] =

∫ ∞

−∞
uf(u) = 0

and V [U ] = E[U2] =

∫ ∞

−∞
u2f(u) = σ2.

(a) Use transformation of variables to show that the (conditional) pdf of yi|xi is given by
g(yi|xi) = f(yi − x′

iβ).

Solution. Recall that if a continuous random variableX has pdf fX , then an increasing 1-to-1

transformation Y = h(X) of this random variable has pdf fX(h
−1(y)) · |∂h

−1(y)
∂y

|. Here yi is an
increasing one-to-one transformation of ui, which has density f . The inverse transformation

is h−1(u) = u−x′
iβ. Therefore the pdf of yi is f(h

−1(yi)) · |∂h
−1(yi)
∂yi

| = f(yi−x′
iβ) = f(ui).

(b) Find the likelihood of y = (y1, . . . , yn) conditional on X = (x1, . . . , xn)
′.

Solution. The likelihood is L(β) =
∏n

i=1 f(yi − x′
iβ).

(c) State the Gauss-Markov theorem.

Solution. In the homoskedastic linear regression model, if β̃ is a linear unbiased estimator of
β, then V [β̃|X] ≥ σ2(X ′X)−1.

(d) We will show in item (f) that the asymptotic variance of
√
n(β̃−β∗) can be smaller than

the asymptotic variance of
√
n(β̂ − β∗), where β̃ is the MLE and β̂ is the OLS estimator.

Explain why this result does not contradict the Gauss-Markov theorem.

Solution. When the MLE estimator lacks linearity and/or unbiasedness, which is perfectly
possible, it falls outside the scope of the Gauss-Markov theorem. Consequently, the asymp-
totic variance of

√
n(β̃ − β∗) can be smaller than that of

√
n(β̂ − β∗) without posing any

contradictions.

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://www.stata.com/manuals13/rregress.pdf
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(e) Find the asymptotic variance of
√
n(β̂ − β∗).

Solution. Write
√
n(β̂ − β∗) = (n−1

∑n
i=1 xix

′
i)
−1√

n (n−1
∑n

i=1 xiui) . By standard LLN,

CMT, CLT, and Slutsky arguments it follows that
√
n(β̂ − β∗)

d−→ N(0,E[xix
′
i]
−1σ2).

(f) Show algebraically that (i) the asymptotic variance of
√
n(β̃ − β∗) is no larger than the

asymptotic variance of
√
n(β̂− β∗); and (ii) give a necessary and sufficient condition on the

density f(u) for the asymptotic variance of β̂ and β̃ to be the same.

Solution. Under standard regularity conditions, taking logs of the likelihood function ob-
tained in (a), using first-order conditions and appealing to the mean value theorem, one can

show that
√
n(β̃−β0)

d−→ N(0, J−1), where J = E
[(

f ′(ui)
f(ui)

)2
xix

′
i

]
. Recall that A−B is PSD

if and only if B−1 − A−1 is PSD. Therefore(
1

σ2
E [xix

′
i]

)−1

−

(
E

[(
f ′(ui)

f(ui)

)2

xix
′
i

])−1

≿ 0

⇐⇒ E

[(
f ′(ui)

f(ui)

)2

xix
′
i

]
− 1

σ2
E [xix

′
i] ≿ 0

(LIE) ⇐⇒ E

[
E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
xix

′
i

]
− E

[
1

σ2
xix

′
i

]
≿ 0. (1)

From Cauchy-Schwartz inequality,

E[u2|xi]︸ ︷︷ ︸
=σ2

E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
≥

E

[
u
f ′(ui)

f(ui)

∣∣∣∣∣xi

]
︸ ︷︷ ︸

=−1


2

= 1, 3

whence

E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
≥ 1

σ2
.

Therefore (1) holds and hence

Avar(β̂)− Avar(β̃) ≿ 0.

A necessary and sufficient condition on the density f(ui) for the asymptotic variance of

β̂ and β̃ to be the same is E

[(
f ′(ui)
f(ui)

)2 ∣∣∣∣∣xi

]
= 1/σ2. A simple sufficient condition is ui

being normally distributed. Observe that in this case we would have f ′(ui)/f(ui) = −ui/σ
2,

whence E

[(
f ′(ui)
f(ui)

)2 ∣∣∣∣∣xi

]
= 1/σ2.

3Observe that E

[
ui

f ′(ui)
f(ui)

∣∣∣∣∣xi

]
=
∫∞
−∞ ui

f ′(ui)
f(ui)

f(ui) dui =
∫∞
−∞ uif

′(ui)dui = uif(ui)
∣∣∣∞
−∞

−
∫∞
−∞ f(ui) dui,

by integration by parts. Since f is a pdf, the second term equals 1. You can show that the first term is zero.
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8. [16.11, LNs] Repeated exercise. See Exercise 5.

9. [16.26, LNs] Suppose that the classical normal regression model applies to

E(y) = x1β1 + x2β2 + x3β3 + x4β4 + x5β5.

A researcher regresses y on (x1, x2, x3, x4, x5), and also regresses w on (z1, z2), where w =
y − x1, z1 = x2 − x4, and z2 = x3.

(a) State the joint null hypothesis that is testable by comparison of the sum of squared
residuals from those two regressions.

Solution. Write the regression model of y on (x1, x2, x3, x4, x5) as

y − x1 = (β1 − 1)x1 + x2β2 + x3β3 + x4β4 + x5β5 + u.

Observe that y−x1 = w. Further, observe that when β1 = 1, β2 = −β4, and β5 = 0 we have

w = (x2 − x4)β2 + x3β3 + u = z1β2 + z2β3 + u,

which is precisely a regression model for a regression of w on (z1, z2). Therefore, the joint
null hypothesis that is testable by comparison of the sum of squared residuals from those two
regressions is H0 : (β1 = 1)∧(β2 = −β4)∧(β5 = 0) against H1 : (β1 ̸= 1)∨(β2 ̸= −β4)∨(β5 ̸=
0), where ∧ and ∨ denote the logical “and” and “or” operators, respectively.

(a) What is the “numerator degrees of freedom” parameter for that test?

Solution. The F statistic for the above test is given by

F =
(SSRR − SSRUR)/q

SSRUR/(n− k)
,

where q is the number of restrictions being tested, n is the sample size, and k the number
of regressors. Since errors are normally distributed, F follows an exact Fq,n−k distribution,
with q “numerator degrees of freedom” and n− k “denominator degrees of freedom”. Since
the number of restrictions being tested is 3, we conclude that the “numerator degrees of
freedom” is 3.

10. [16.27, LNs] Suppose that the classical normal regression model applies to E[y] =
x1β1 + x2β2 + x3β3 + x4β4. Let w = y − x4, z1 = x1, z2 = x2 − x4, z3 = x3 − x4. For
a sample of 104 firms, regression y on (x1, x2, x3, x4) gives 70 as the sum of squared residu-
als, while regression w on (z1, z2, z3) gives 80 as the sum of squared residuals.

(a) Test at the 5% significance level the null hypothesis β1+β2+β4 = 1 against the two-sided
alternative β2 + β3 + β4 ̸= 1.
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Solution. We can write the model

y = x1β1 + x2β2 + x3β3 + x4β4 + u

as y − x4 = x1β1 + (x2 − x4)β2 + (x3 − x4)β3 + (β2 + β3 + β4 − 1)x4 + u, or, equivalently,

w = z1β1 + z2β2 + z3β3 + γx4 + u,

where γ ≡ β2 + β3 + β4 − 1. Under this equivalent formulation, testing β1 + β2 + β4 = 1
against β1 + β2 + β4 ̸= 1 boils down to testing γ = 0 against γ ̸= 0. The F -statistic for such
a test can be written as

F =
SSE(β̃CLS)− SSE(β̂OLS)

s2
,

where SSE(β) =
∑n

i=1(yi−X ′
iβ)

2 denote the sum-of-squared errors, β̃CLS is the OLS coeffi-
cient obtained from regressing w on (z1, z2, z3) only (i.e., the OLS coefficient obtained under
the null restriction γ = 0), and β̂OLS is the OLS coefficient obtained from regressing y on
(x1, x2, x3, x4). At the 5% significance level, we reject the null hypothesis if F > 3.84, where
3.84 is the (approximate) 95% quantile of a χ2(1) distribution.4

We have SSE(β̃CLS) = 80, SSE(β̂OLS) = 70, and s2 = 0.7.5 It follows that

F =
80− 70

0.7
≈ 14.29 > 3.84.

Therefore, at the 5% significance level we reject the null of γ = β1 + β2 + β4 − 1 = 0.

(b) Let v = y − x2, t1 = x1, t2 = x3 − x2, t3 = x4 − x2. If v is regressed on (t1, t2, t3), what
sum of squared residuals will be obtained?

Solution. Observe that t1 = z1, t2 = x3 − x4 + x4 − x2 = z3 − z2, and t3 = −z2. Therefore

v = t1β1 + t2β2 + t3β2 + u

⇐⇒ y − x2 = z1β1 + (z3 − z2)β2 − z2β3 + u

⇐⇒ y − x4 = z1β1 + (z3 − z2)β2 − z2β3 + x2 − x4 + u

⇐⇒ w = z1β1 + z3β2 − z2β2 − z2β3 + z2 + u

⇐⇒ w = z1β1 + z2(1− β2 − β3) + z3β2 + u

⇐⇒ w = z1γ1 + z2γ2 + z3γ3 + u,

where γ1 ≡ β1, γ2 ≡ 1− β2 − β3, and γ3 ≡ β2. This is a regression model for a regression of
w on (z1, z2, z3). Therefore the sum of squared residuals will be 80.

4Since, for this exercise, the errors are assumed to be normally distributed, it can be shown that the
F statistic follows an exact Fq,n−k = F1,100 distribution. Therefore, we could use the 95% quantile of
this distribution, which yields a critical value of approximately 3.94. This value is more precise than the
approximate critical value of 3.84 obtained from the asymptotic χ2(1) distribution of F . However, given that
F = 14.29 is a relatively large value, the conclusion would remain the same regardless of the distribution
considered.

5Recall that

s2 =

∑n
i=1 û

2
i

n− k
=

SSE(β̂OLS)

n− k
.
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11. [16.28, LNs] Consider the following regression model:

yi = Xiβi + ui, i = 1, 2

where (yi)ni×1, (Xi)ni×k are nonrandom, (ui)ni×1. Assume ui ∼ N(0;σ2Ini
) and that E(uiu

′
j) =

0, i ̸= j, where i indicates two groups of a population: married and single individuals. The
goal is to test the equality between married’s parameters and single’s parameters, H0 : β1 =
β2. Note that you can pile the two equations in just one model:[

y1
y2

]
=

[
X1

0

]
β1 +

[
0
X2

]
β2 + u.

That is, for y = (y′1, y
′
2)

′ and u = (u′
1, u

′
2)

′, we have

y =

[
X1

0

]
β1 +

[
0
X2

]
β2 + u.

(a) Rewrite this model as a function of a new parameter γ so that testing H0 : β1 = β2 is
equivalent to testing H0 : γ = 0. Compute the test based on the F -statistic as the difference
between restricted and unrestricted sum of squared residuals: SSRR − SSRUR.

Solution. Write

y =

[
X1

0

]
β1 +

[
0
X2

]
β2 + u

=

[
X1

0

]
β1 −

[
X1

0

]
β2 +

[
X1

0

]
β2 +

[
0
X2

]
β2 + u

=

[
X1

0

]
(β1 − β2) +

[
X1

X2

]
β2 + u

=

[
X1

0

]
γ +

[
X1

X2

]
β2 + u,

where γ ≡ β1 − β2, and β ≡ (γ′, β′
2)

′. Testing H0 : β1 = β2 then becomes equivalent to
testing H0 : γ = 0. The F -statistic for this test is the usual

F =

∑n
i=1 û

2
i

n− k
=

SSRR − SSRUR

SSRUR/(n− k)
=

SSRR − SSRUR

s2
,

where SSRUR is the sum of squared residuals under the OLS coefficient obtained by re-

gressing y on

[
X1

0

]
and

[
0
X2

]
, and SSRR is the sum of squared residuals under the OLS

coefficient obtained by regressing y on

[
X1

X2

]
; that is, the constrained least squares estimate

under the null restriction γ = 0. At the 5% significance level, we reject the null hypothesis
if F > 3.84, where 3.84 is the (approximate) 95% quantile of a χ2(1) distribution.6

6Again, since errors are assumed to be normal, we could alternatively use the 95% quantile of a Fq,n−k

distribution, instead of the asymptotic approximate 95% from a χ2(1) distribution.
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(b) Show that SSRUR = SSR1 + SSR2, and that SSRR = SSR3, where:

1. SSR1 is the SSR obtained from regressing y1 on X1.

2. SSR2 is the SSR obtained from regressing y2 on X2.

3. SSR3 is the SSR obtained from regressing (y′1, y
′
2)

′ on (X ′
1, X

′
2)

′.

Solution.

SSRUR =

([
y1
y2

]
−
[
X1

0

]
β1 −

[
0
X2

]
β2

)′([
y1
y2

]
−
[
X1

0

]
β1 −

[
0
X2

]
β2

)
=
([
y′1 y′2

]
− β′

1

[
X ′

1 0′
]
− β′

2

[
0′ X ′

2

])([y1
y2

]
−
[
X1

0

]
β1 −

[
0
X2

]
β2

)
=
(
−β′

1

[
X ′

1 0′
]
− β′

2

[
0′ X ′

2

])
×

([
y′1 y′2

] [y1
y2

]
−
[
y′1 y′2

] [X1

0

]
β1 −

[
y′1 y′2

] [ 0
X2

]
β2

+ β′
1

[
X ′

1 0
]′ [X1

0

]
β1 + β′

2

[
X ′

2 0
]′ [X2

0

]
β2

)
= y′1y1 − y′1X1β1 + β′

1X
′
1X1β1 + y′2y2 − y′2X2β2 + β′

2X
′
2X2β2

= (y1 −X1β1)
′(y1 −X1β1) + (y2 −X2β2)

′(y2 −X2β2) = SSR1 + SSR2.

SSRR =

([
y1
y2

]
−
[
X1

0

]
β1 −

[
0
X2

]
β2

)′([
y1
y2

]
−
[
X1

0

]
β1 −

[
0
X2

]
β2

)
=

([
y1
y2

]
−
[
X1

0

]
β2 −

[
0
X2

]
β2

)′([
y1
y2

]
−
[
X1

0

]
β2 −

[
0
X2

]
β2

)
=

(
y −

[
X1

X2

]
β2

)′(
y −

[
X1

X2

]
β2

)
= SSR3.


