
Statistics II Problem Set 3
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli August 31, 2023

1. We have a regressor xi, taking values 0, 1, . . . , 10, say, years of education. The outcome is
a continuous variable yi, say, logarithm of income. We have a sample of n indiviuals where
(yi, xi) are i.i.d. Assume all necessary conditional and unconditional moments exist.

(a) Write yi = E[yi|xi] + ui, where ui ≡ yi − E[yi|xi]. Show that E[ui|xi] = 0.

Solution.

E[ui|xi] = E[yi − E[yi|xi] | xi] = E[yi | xi]− E[E[yi|xi] | xi] = E[yi | xi]− E[yi | xi] = 0.

(b) Must ui be conditionally homoskedastic, i.e., is V [ui|xi] the same regardless of xi? Ex-
plain your answer.

Solution. No. V [ui|xi] = E[y2i |xi]− E[yi|xi]
2 = V [yi|xi]. There is no reason for the variance

of yi (and hence of ui) to be the same across every possible group (i.e., across every possible
value xi ∈ {0, 1, . . . , 10} can take). Although (yi, xi) are i.i.d., it is not necessarily true that
yi|xi and yi|xj are i.i.d for all i, j. In particular, it is indeed true that V [yi|xi] = V [yi|xj]
if xi = xj. However, if xi ̸= xj it is perfectly possible that V [yi|xi] ̸= V [yi|xj]. Notice that
such (potential) heteroskedasticity arises precisely from conditioning. Indeed, (yi, xi) being
i.i.d. implies that ui is unconditionally homoskedastic, but not necessarily conditionally
homoskedastic.

(c) We want to compute how much, on average, the outcome increases when the regressor
increases from 5 to 6 years of schooling:

θ5,6 = E[yi|xi = 6]− E[yi|xi = 5].

Find the conditional expectation and variance of

θ̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

Solution.

E[θ̂|X] =

∑n
i=1 xiE[yi|xi]∑n

i=1 x
2
i

and V [θ̂|X] =

∑n
i=1 x

2
iV [yi|xi]

(
∑n

i=1 x
2
i )

2 .

Notice that without introducing further structure we cannot go beyond this point. Moving
the expectations and variances out of the summations would be incorrect, as per item (a),
we cannot ensure that they are equal for all i.
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(d) Consider the estimator

θ̂5,6 =

∑
i∈{i:xi=6} yi

n6

−
∑

i∈{i:xi=5} yi

n5

=

∑n
i=1 yiI(xi = 6)∑n
i=1 I(xi = 5)

−
∑n

i=1∑n
i=1 I(xi = 5)

,

where n5 and n6 denote the number of individuals in the sample taking values xi = 5 and
xi = 6, respectively. Find the conditional expectation and variance of θ̂5,6.

Solution. For j = 5, 6, observe that

E

[∑n
i=1 yiI(xi = j)∑n
i=1 I(xi = j)

∣∣∣∣∣X
]
=

∑n
i=1 I(xi = j)E[yi|xi]∑n

i=1 I(xi = j)

=

∑n
i=1 I(xi = j)

∫∞
−∞ yify|x(yi|x = xi) dyi∑n

i=1 I(xi = j)

=

∑n
i∈{i:xi=j} I(xi = j)

∫∞
−∞ yify|x(yi|x = j) dyi∑n

i∈{i:xi=j} I(xi = j)

=

∑n
i∈{i:xi=j} I(xi = j)E[yi|xi = j]∑n

i∈{i:xi=j} I(xi = j)

= E[yi|xi = j],

where the last equality follows from the i.i.d. property of (yi, xi) and the fact that all xi

involved in the summation are conditioned to the same value j, so we can move the expec-
tation out of the summation and cancel out the sums.

It follows that
E[θ̂5,6|X] = E[yi|xi = 6]− E[yi|xi = 5] = θ5,6.

That is: θ̂5,6 is a conditionally unbiased estimator for θ regardless of the functional form of
the conditional expectation function m(xi) = E[yi|xi].

Similar calculations for the variance yield

V [θ̂5,6|X] = n−1
6 V [yi|xi = 6] + n−1

5 V [yi|xi = 5].

An alternative way of seeing this is by looking at the first representation of θ̂5,6. Notice
that (yi, xi)’s being i.i.d. implies that yi’s are also i.i.d. and that the sets {i : xi = 6} and
{i : xi = 5} are disjoint, so we can write the variance of the sum as the sum of variances:

V (θ̂5,6) =

∑
i∈{i:xi=6} V [yi|xi]

n2
6

−
∑

i∈{i:xi=5} V [yi|xi]

n2
5

=
n6V [yi|xi = 6]

n2
6

− n5V [yi|xi = 5]

n2
5

= n−1
6 V [yi|xi = 6] + n−1

5 V [yi|xi = 5].

The second equality follows from the fact that in each summation all terms are being con-
ditioned to the same value of xi, whence by identicality of (yi, xi) all variances in each
summation must be equal, as argued in item (b). The same works for the expectation.
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(e) Compare the MSE of θ̂ and θ̂5,6 when we are interested in θ5,6 if the effect is homogeneous
and errors are homoskedastic.

Solution. If the effect is homogeneous, we have E[yi|xi] = xiθ
∗ for some constant θ∗. Notice

that in this case
E[θ̂|X] = E[θ̂5,6|X] = θ∗,

so both estimators are conditionally unbiased. Therefore, by the bias-variance decomposi-
tion, the (conditional) MSEs become simply the conditional variances of each estimator:

MSE(θ̂) = V [θ̂|X] and MSE(θ̂5,6) = V [θ̂5,6|X].

Under (conditional) homoskedasticity, V [θ̂|X] = (
∑n

i=1 x
2
i )

−1
σ2. Observe that both θ̂ and

θ̂5,6 are linear estimators. Therefore the (classical) Gauss-Markov theorem applies and we

must have V [θ̂|X] ≤ V [θ̂5,6|X], whence it follows that MSE(θ̂) ≤ MSE(θ̂5,6).

(f) Compare the MSE under different departures from homogeneity and homoskedasticity.

Solution. Under homogeneity and homoskedasticity, Gauss-Markov applies and θ̂ dominates
θ̂5,6, as demonstrated in item (e). Under homogeneity and heteroskedasticity, both θ̂ and

θ̂5,6 are still conditionally unbiased and hence there is still no bias-variance tradeoff. But
since errors are heteroskedastic, Gauss-Markov doesn’t apply anymore. The relative MSE
between the two estimators becomes ambiguous and depends on the variance structure of
each estimator, which without further assumptions can be anything.

Under heterogeneity and homoskedasticity, θ̂5,6 is still conditionally unbiased, but θ̂ is not

necessarily conditionally unbiased anymore. A bias-variance tradeoff between θ̂ and θ̂5,6
arises and the relative MSE between the two estimators mainly depends on the degree of
departure from homogeneity, which governs the size of the bias of θ̂. Under heterogeneity
and heteroskedasticity, anything goes: the relative MSE between θ̂ and θ̂5,6 depends simul-
taneously on the variance structures of both estimators, which without further assumptions
can be anything, and on the degree of departure from homogeneity governing the size of the
bias of θ̂ (and hence the bias-variance tradeoff between the two estimators).

Homoskedasticity Heteroskedasticity

Homogeneity
MSE(θ̂) ≤ MSE(θ̂5,6),
by Gauss-Markov theorem.

MSE(θ̂) ⋚ MSE(θ̂5,6),
depending on the variance structure.

Heterogeneity
MSE(θ̂) ⋚ MSE(θ̂5,6),
depending on the degree of

departure from homogeneity.

MSE(θ̂) ⋚ MSE(θ̂5,6),
depending on the variance structure and the

degree of departure from homogeneity.
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2. [7.2, LNs] This question is on an application of the Cramér-Wold device, and uses the
(multivariate) continuity theorem. Let Xn, 1 ≤ n ≤ ∞, be random vectors with characteris-

tic function φn(t). (i) if Xn
d−→ X then φn(t) → φ(t) for all t; and, (ii) if φn(t) converges

pointwise to a limit φ(t) that is continuous at zero, then Xn
d−→ X (with X having charac-

teristic function φ(t).

(a)Use characteristic functions to prove the Crámer-Wold device: a sequence of k-dimensional
random vectors Sn, n = 1, 2, . . . , converges in distribution to a random vector S if and only

if α′Sn
d−→ α′S for every fixed vector α ̸= 0.

Solution. If Sn
d−→ S, then φn(τ) → φ(τ) for all τ ∈ Rk. In particular, we can let τ = αt for

any arbitrary t ∈ R and every fixed vector α ∈ Rk\{0} so that

E[eitα′Sn ] = E[ei(αt)′Sn ] = φn(αt) → φ(αt) = E[ei(αt)′S] = E[eitα′S].

Observe that φn(tα) and φ(tα) are precisely the characteristic functions of α′Sn and α′S,
respectively, when viewed as functions of t only (i.e., given a fixed α ∈ Rk). Therefore

α′Sn
d−→ α′S. Conversely, if α′Sn → α′S for every fixed vector α ̸= 0, then

E[eiτα′Sn ] → E[eiτα′S] for all τ ∈ R.

In particular, we can let τ = 1 so that

φn(α) = E[eiα′Sn ] → E[eiα′S] = φ(α) for all α ∈ Rk.

Observe that φn(α) and φ(α) are precisely the characteristic functions of Sn and S, respec-

tively, as functions of α ∈ Rk. Therefore Sn
d−→ S.

(b) Let X1, X2, . . . , Xn be i.i.d. random vectors of dimension k with E[Xi] = µ and variance
V (Xi) = E[(Xi − µ)(Xi − µ)′] = Σ. The variance Σ is positive definite (a′Σa > 0 for any
a ̸= 0). Find the limiting distribution of

√
n(X̄n − µ).

Solution. Let Sn =
√
n(X̄n−µ) and observe that, by the univariate central limit theorem, for

any α ∈ Rk\{0} we have α′Sn =
√
n(α′X̄n − α′µ)

d−→ N(0, α′Σα). Notice that N(0, α′Σα) =

α′N(0,Σ) =: α′S, where S ∼ N(0,Σ), whence it follows, by (a), that Sn
d−→ S. We have just

proved the multivariate central limit theorem.
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3. [16.7, LNs] Let X and y be

X = [X1, X2] =


1 2
1 4
1 3
1 5
1 2

 and y =


14
17
8
16
3

 .

Calculate the following: (a) Q = X ′X, |X ′X|, and Q−1.

Solution.

Q =

[
5 16
16 58

]
, |X ′X| = 34, and Q−1 =

[
29
17

− 8
17

− 8
17

5
34

]
.

(b) A = Q−1X ′ and β̂ = Ay.

Solution.

A =

[
13
17

− 3
17

5
17

−11
17

13
17

− 3
17

2
17

− 1
34

9
34

− 3
17

]
and β̂ =

[
2
3

]
.

(c) N and ŷ = Ny.

Solution.

N =


7
17

1
17

4
17

− 2
17

7
17

1
17

5
17

3
17

7
17

1
17

4
17

3
17

7
34

5
34

4
17

− 2
17

7
17

5
34

23
34

− 2
17

7
17

1
17

4
17

− 2
17

7
17

 and ŷ =


8
14
11
17
8

 .

(d) M and e = My.

Solution.

M =


10
17

− 1
17

− 4
17

2
17

− 7
17

− 1
17

12
17

− 3
17

− 7
17

− 1
17

− 4
17

− 3
17

27
34

− 5
34

− 4
17

2
17

− 7
17

− 5
34

11
34

2
17

− 7
17

− 1
17

− 4
17

2
17

10
17

 and e =


6
3
−3
−1
−5

 .

(e) tr(N) and tr(M).

Solution.
tr(N) = 2 and tr(M) = 3.
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(f) X∗
2
′X∗

2 , X
∗
2
′X2, X

∗
2
′y∗, and X∗

2
′y.

Solution.

X∗
2
′X∗

2 =
34

5
, X∗

2
′X2 =

34

5
, X∗

2
′y∗ =

102

5
, and X∗

2
′y =

102

5
.

(g) (X∗
2
′X∗

2 )
−1X∗

2
′y, and compare your answer with item (b).

Solution. As in item (b) we obtained β̂2 = 3, by the FWL theorem the answer must be 3.

(X∗
2
′X∗

2 )
−1X∗

2
′y = 3.

4. [16.27, LNs] Suppose that the classical normal regression model applies to E[y] = x1β1 +
x2β2 + x3β3 + x4β4. Let w = y − x4, z1 = x1, z2 = x2 − x4, z3 = x3 − x4. For a sample
of 104 firms, regression y on (x1, x2, x3, x4) gives 70 as the sum of squared residuals, while
regression w on (z1, z2, z3) gives 80 as the sum of squared residuals.

(a) Test at the 5% significance level the null hypothesis β1+β2+β4 = 1 against the two-sided
alternative β2 + β3 + β4 ̸= 1.

Solution. We can write the model

y = x1β1 + x2β2 + x3β3 + x4β4 + u

as y − x4 = x1β1 + (x2 − x4)β2 + (x3 − x4)β3 + (β2 + β3 + β4 − 1)x4 + u, or, equivalently,

w = z1β1 + z2β2 + z3β3 + γx4 + u,

where γ ≡ β2 + β3 + β4 − 1. Under this equivalent formulation, testing β1 + β2 + β4 = 1
against β1 + β2 + β4 ̸= 1 boils down to testing γ = 0 against γ ̸= 0. The F -statistic for such
a test can be written as

F =
SSE(β̃CLS)− SSE(β̂OLS)

s2
,

where SSE(β) =
∑n

i=1(yi−X ′
iβ)

2 denote the sum-of-squared errors, β̃CLS is the OLS coeffi-
cient obtained from regressing w on (z1, z2, z3) only (i.e., the OLS coefficient obtained under
the null restriction γ = 0), and β̂OLS is the OLS coefficient obtained from regressing y on
(x1, x2, x3, x4). At the 5% significance level, we reject the null hypothesis if F > 3.84, where
3.84 is the (approximate) 95% quantile of a χ2(1) distribution.



Statistics II Problem Set 3 - Page 7 of 13 August 31, 2023

We have SSE(β̃CLS) = 80, SSE(β̂OLS) = 70, and s2 = 0.7.1 It follows that

F =
80− 70

0.7
≈ 14.29 > 3.84.

Therefore, at the 5% significance level we reject the null of γ = β1 + β2 + β4 − 1 = 0.

(b) Let v = y − x2, t1 = x1, t2 = x3 − x2, t3 = x4 − x2. If v is regressed on (t1, t2, t3), what
sum of squared residuals will be obtained?

Solution. Observe that t1 = z1, t2 = x3 − x4 + x4 − x2 = z3 − z2, and t3 = −z1. Therefore

v = t1β1 + t2β2 + t3β2 + u

⇐⇒ y − x2 = z1β1 + (z3 − z2)β2 − β3z1 + u

⇐⇒ y − x4 = z1β1 + (z3 − z2)β2 − β3z1 + x2 − x4 + u

⇐⇒ w = z1β1 + (z3 − z2)β2 − z1β3 + z1 + u

⇐⇒ w = z1(1 + β1 − β3) + (z3 − z2)β2 + u

⇐⇒ w = z1γ1 + (z3 − z2)γ2 + u,

where γ1 ≡ 1 + β1 − β3 and γ2 ≡ β2. This is a regression of w on linear combinations of
(z1, z2, z3), so it will generate the exact same residuals as the regression of w on (z1, z2, z3).

2

Therefore the sum of squared residuals will be 80.

5. [8.18, Hansen] Suppose you have two independent samples each with n observations which
satisfy the models Y1 = X ′

1β1 + e1 with E[X1e1] = 0 and Y2 = X ′
2β2 + e2 with E[X2e2] = 0

where β1 and β2 are both k×1. You estimate β1 and β2 by OLS on each sample, with consis-
tent asymptotic covariance matrix estimators V̂β1 and V̂β2. Consider the efficient minimum
distance estimation under the restriction β1 = β2.

(a) Find the estimator β̃ of β = β1 = β2.

Solution. Since the samples are independent, the estimators are independent and thus their

joint asymptotic covariance matrix (and estimate) is block diagonal:

[
V̂β1 0

0 V̂β2

]
. The

minimum-distance criterion takes the form

Jn(β) = n

[
β̂1 − β

β̂2 − β

]′ [
V̂β1 0

0 V̂β2

]−1 [
β̂1 − β

β̂2 − β

]
= n(β̂1 − β)′V̂ −1

β1
(β̂1 − β) + n(β̂2 − β)′V̂ −1

β2
(β̂2 − β).

1Recall that

s2 =

∑n
i=1 û

2
i

n− k
=

SSE(β̂OLS)

n− k
.

2Recall Exercise 5.1 from Problem Set 2.
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The FOC for minimization are

−2nV̂ −1
β1

(β̂1 − β̃)− 2nV̂ −1
β2

(β̂2 − β̃) = 0

with solution
β̃ = (V̂ −1

β1
+ V̂ −1

β2
)−1(V̂ −1

β1
β̂1 + V̂ −1

β2
β̂2).

This is a weighted average of the estimators β̂1 and β̂2, with weights depending on the
covariance matrices.

(b) Find the asymptotic distribution of β̃.

Solution. We know that since β1 = β2 = β,

√
n(β̂1 − β)

d−→ Z1 ∼ N(0, Vβ1) and
√
n(β̂2 − β)

d−→ Z2 ∼ N(0, Vβ2),

where Z1 and Z2 are independent. The convergence is also joint convergence. Furthermore,
V̂β1

p−→ Vβ1 and V̂β2

p−→ Vβ2 . It follows that

√
n(β̃ − β) = (V̂ −1

β1
+ V̂ −1

β2
)−1(V̂ −1

β1

√
n(β̂1 − β) + V̂ −1

β2

√
n(β̂2 − β))

d−→ (V −1
β1

+ V −1
β2

)−1(V −1
β1

Z1 + V −1
β2

Z2)

∼ (V −1
β1

+ V −1
β2

)−1N(0, V −1
β1

+ V −1
β2

)

= N
(
0, (V −1

β1
+ V −1

β2
)−1

)
.

(c) How would you approach the problem if the sample sizes are different, say n1 and n2?

Solution. The (approximate) variance of β̂1 is n−1
1 V̂β1 and that of β̂2 is n−1

2 V̂β2 . Thus a
minimum-distance criterion can be written as

Jn(β) =

[
β̂1 − β

β̂2 − β

]′ [
n−1
1 V̂β1 0

0 n−1
2 V̂β2

]−1 [
β̂1 − β

β̂2 − β

]
= n1(β̂1 − β)′V̂ −1

β1
(β̂1 − β) + n2(β̂2 − β)′V̂ −1

β2
(β̂2 − β).

Minimizing, we find the solution

β̃ = (n1V̂
−1
β1

+ n2V̂
−1
β2

)−1(n1V̂
−1
β1

β̂1 + n2V̂
−1
β2

β̂2).

This is also a weighted average, but now the weights depend on the sample size as well. To
develop an asymptotic theory we need to describe what it means for n1, n2 to diverge to
infinity. A convenient solution is to assume that both diverge, but n1/n2 → c, a constant
which can differ from one. In practice, we simply think of c as the observed ratio n1/n2.
Then we can treat n1 = cn2, and conduct the asymptotics as n2 → ∞. We have

√
n1(β̂1 − β)

d−→ Z1 ∼ N(0, Vβ1) and
√
n2(β̂2 − β)

d−→ Z2 ∼ N(0, Vβ2).
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Also,
√
n2(β̂1 − β) =

√
n2

n1

√
n1(β̂1 − β)

d−→ c−1/2Z1.

Notice that

β̃ =

(
n1

n2

V̂ −1
β1

+ V̂ −1
β2

)−1(
n1

n2

V̂ −1
β1

β̂1 + V̂ −1
β2

β̂2

)
≈

(
cV̂ −1

β1
+ V̂ −1

β2

)−1

(cV̂ −1
β1

β̂1 + V̂ −1
β2

β̂2),

whence it follows that

√
n2(β̃ − β) = (cV̂ −1

β1
+ V̂ −1

β2
)−1(cV̂ −1

β1

√
n2(β̂1 − β) + V̂ −1

β2

√
n2(β̂2 − β))

d−→ (cV −1
β1

+ V −1
β2

)−1(cV −1
β1

c−1/2Z1 + V −1
β2

Z2)

∼ (cV −1
β1

+ V −1
β2

)−1N(0, cV −1
β1

+ V −1
β2

)

= N
(
0, (cV −1

β1
+ V −1

β2
)−1

)
.

If you want to write in terms of n1,

√
n1(β̃ − β) =

√
n1

n2

√
n2(β̃ − β)

d−→ c1/2N
(
0, (cV −1

β1
+ V −1

β2
)−1

)
= N

(
0, (V −1

β1
+ c−1V −1

β2
)−1

)
.

The two are equivalent.

6. [16.29, LNs] Consider the regression

y = Xβ + u,

where E[u|X] = 0 and V [u|X] = σ2IN with unknown σ2.

(a) Find the Wald statistic for H0 : Rβ − r = 0. Derive its distribution under H0.

Solution. Let R be a full rank q × k matrix. The Wald statistic for H0 : Rβ − r = 0 is

W = (Rβ̂ − r)′V̂ −1

Rβ̂
(Rβ̂ − r) =

√
n(Rβ̂ − r)′V̂ −1

Rβ

√
n(Rβ̂ − r),

where V̂Rβ̂ is some (consistent) covariance matrix estimator for Rβ̂ and V̂Rβ ≡ nV̂Rβ̂.

We know that
√
n(β̂ − β)

d−→ N(0,E[xix
′
i]
−1σ2). Under the null, Rβ = r. Therefore, by the

multivariate delta method,

√
n(Rβ̂ − r) =

√
n(Rβ̂ −Rβ)

d−→
H0

RN(0,E[xix
′
i]
−1σ2) = N(0, RE[xix

′
i]
−1R′σ2︸ ︷︷ ︸

≡VRβ̂

) ≡ Z.
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Since V̂Rβ̂

p−→ VRβ, it follows by the continuous mapping theorem and Slutsky’s theorem that

W
d−→
H0

Z ′[RE[xix
′
i]
−1R′σ2]−1Z ∼ χ2

q.

Thus the Wald statistic for H0 : Rβ − r = 0 is asymptotically chi-squared distributed with
q degrees of freedom.

(b) Show that the Wald statistic for Rβ − r = 0 equals the largest Wald statistic among all
one-dimensional tests for restrictions of the form c′(Rβ − r) = 0. Comment.

Solution. The Wald statistic for restrictions of the form c′(Rβ − r) = 0 is

Wc = [c′(Rβ̂ − r)]′V̂ −1

c′Rβ̂
c′(Rβ̂ − r).

Notice that
V̂c′Rβ̂ = c′V̂Rβ̂c,

Write

Wc = [c′(Rβ̂ − r)]′[c′V̂Rβ̂c]
−1c′(Rβ̂ − r)

=
[c′(Rβ̂ − r)]′c′(Rβ̂ − r)

c′V̂Rβ̂c

=
[c′(Rβ̂ − r)]2

c′V̂Rβ̂c

=
[v′V̂

−1/2

Rβ̂
(Rβ̂ − r)]2

v′v

(Cauchy-Schwartz) ≤
v′v[V̂

−1/2

Rβ̂
(Rβ̂ − r)]′V̂

−1/2

Rβ̂
(Rβ̂ − r)

v′v

= (Rβ̂ − r)′V̂ −1

Rβ̂
(Rβ̂ − r) = W,

where v = V̂
1/2

Rβ̂
c and V̂

1/2

Rβ̂
is such that V̂

1/2

Rβ̂
V̂

1/2

Rβ̂
= V̂Rβ̂.

Observe that, in particular, one could set c = ei to be a canonical selector vector that selects
the i-th restriction in Rb − r. Suppose instead of the original procedure of jointly testing
all the restrictions, H0 : Rb − r = 0, one proposes a new different procedure: testing each
restriction separately, by performing a sequence of p independent tests H0 : e

′
i(Rb− r) = 0,

i = 1, . . . , p, with associated Wald statistic Wi, and then claiming that the joint restrictions
are rejected if at least one of the separate tests rejects the null. The above result tells us
that Wi ≤ W for all i = 1, . . . , q. We reject the null when, for a given 1− α quantile k, the
Wald statistic is greater than k. Thus for some i and some α we could have quantiles k1 and
kq such that k1 < Wi < W < kq, where k1 and kq are the 1 − α quantiles of the χ2

1 and χ2
q

distributions, respectively. In this case, the new procedure would reject the null, while the
original one would not. This shows that the new proposed procedure is problematic. Indeed,
it could even be used for cheating: for example, one could purposely seek a significance
level such that k1 < Wi < W < kq for some i so that we reject the null based on the new
procedure when actually — based on the original correct one — we should not!
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7. [7.18, Hansen] Suppose an economic model suggests

m(x) = E[Y |X = x] = β0 + β1x+ β2x
2,

where X ∈ R. You have a random sample (Yi, Xi), i = 1, . . . , n.

(a) Describe how to estimate m(x) at a given value x.

Solution. The model is a linear regression. We know this because the question specifies the
conditional mean of yi given xi. This is a regression, so it does not need to be assumed.
Furthermore, as the conditional variance is unspecified we assume heteroskedasticity.

Write

g(x) = E[yi|xi = x]

= β0 + β1x+ β2x
2

= z′β,

where

β =

β0

β1

β2

 and z =

 1
x
x2

 .

As the equation is linear in the parameters, it can be estimated by least-squares:

yi = β̂0 + β̂1xi + β̂2x
2
i + êi = β̂′zi + êi,

where

β̂ =

β̂0

β̂1

β̂2

 and z =

 1
xi

x2
i

 .

The estimate for the conditional mean function at x is simply

ĝ(x) = β̂0 + β̂1x+ β̂x2 = z′β̂.

Notice that since the model is a regression, FGLS would also be possible. However, since the
model did not suggest a functional form for the variance, FGLS would require an approximate
variance equation, and it may just be easiest and best to use least-squares.

(b) Describe (be specifc) an appropriate confidence interval for m(x).

Solution. We know that √
n(β̂ − β)

d−→ N(0, V ),

where V = Q−1ΩQ−1. Thus

√
n(ĝ(x)− g(x)) =

√
n(z′β̂ − z′β) = z′

√
n(β̂ − β)

d−→ N(0, z′V z).
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An estimator for V is
V̂ = Q̂−1Ω̂Q̂−1,

where

Q̂ =
1

n

n∑
i=1

ziz
′
i and Ω̂ =

n∑
i=1

ziz
′
iê

2
i .

A standard error for ĝ(x) = z′β̂ is (n−1z′V̂ z)1/2. An asymptotic 95% confidence interval is

ĝ(x)± 2(n−1z′V̂ z)1/2 = z′β̂ ± 2(n−1z′V̂ z)1/2

= β̂0 + β̂1x+ β̂2x
2 ± 2(n−1z′V̂ z)1/2.

Since the function z′β̂ is linear in the parameters, this Wald confidence interval approach is
appropriate.

10. [16.31, LNs] Consider the model

yi = x′
iβ + ui,

where (x′
i, ui) are iid with u|xi ∼ N(0, σ2). We want to test H0 : β = β0 against H1 : β ̸= β0

using the statistic

W =
(β̂ − β0)

′X ′X(β̂ − β0)

σ2
.

(a) Is this statistic pivotal? Explain your answer.

Solution. Under the null, yes. Observe that β̂ − β0 = (X ′X)−1X ′u, whence

W = (X ′u)′(X ′Xσ2)−1X ′u.

Notice that X ′u ∼ N(0, X ′Xσ2). Therefore W ∼ χ2
k, which does not depend on (β, σ).

(d) Show that

Ŵ =
(β̂ − β0)

′X ′X(β̂ − β0)/k

e′e/(n− k)

has a F (k, n− k) distribution under the null.

Solution. We have already verified that, under the null, when divided by σ2, the numerator
term has a χ2

k distribution. For the denominator, notice that e′e/σ2 = u′Mu/σ2. Spectral
decomposition on M gives M = HΛH ′, where H ′H = In. Thus

e′e

σ2
=

(
H ′u

σ

)′

Λ

(
H ′u

σ

)
=

(
H ′u

σ

)′ [
In−k 0
0 0

](
H ′u

σ

)
.
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Let w ≡ H ′u/σ. Notice that w ∼ N(0, In). Partition w = (w′
1, w

′
2)

′, where w1 ∼ N(0, In−k).
It follows that

e′e

σ2
= w′

1w1 ∼ χ2
n−k.

Write

Ŵ =

∼χ2
k︷ ︸︸ ︷

(β̂ − β0)
′X ′X(β̂ − β0)

σ2 /k

e′e

σ2︸︷︷︸
∼χ2

n−k

/(n− k)

∼ F (k, n− k).

Notice that numerator and denominator terms are independent. Indeed, the numerator term
can be written as u′Nu/σ2, while the denominator term can be written as u′Mu/σ2. As N
and M are orthogonal, both terms are orthogonal and hence independent (due to normality).
Therefore Ŵ ∼ F (k, n− k).

(e) Show that Ŵ asymptotically has a chi-square distribution with k degrees of freedom.

Solution. Consider the above expression for Ŵ . Notice that e′e/(n−k)
p−→ σ2, so the denom-

inator asymptotically converges to 1. Furthermore, observe that the numerator asymptoti-
cally converges in distribution to Z ′[E[xix

′
i]
−1σ2]−1Z/k ∼ χ2

k/k, where Z ∼ N(0,E[xix
′
i]
−1σ2).3

Therefore, by Slutsky, it follows that kŴ
d−→ χ2

k.

3This is a particular case of Exercise 6, item (a). Here, R = Ik and r = β0.


