
Statistics II Problem Set 3
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli August 30, 2024

1. [16.25, LNs] Consider the population model yt = Xtβ + ut, where the product Xtut is iid,

with E(ut|Xt) = 0, V (ut|Xt) = σ2. Let XT×k =
[
X ′

1, . . . , X
′
T

]′
and suppose plim

(
X′X
n

)
=

E(X ′
tXt) = ΣX′X , a positive definite matrix.

(a) Find the mistakes in the derivation of the asymptotic variance of
√
n
(
β̂ − β

)
below:

AV
(
β̂
)
= plim

(√
n
(
β̂ − β

)√
n
(
β̂ − β

)′)
= plim

(
X ′X

n

)−1

plim

(
X ′uu′X

n

)
plim

(
X ′X

n

)−1

= Σ−1
X′Xσ

2ΣX′XΣ
−1
X′X = σ2Σ−1

X′X .

Solution. The derivation is wrong primarily because there is no reason for

plim

(
X ′uu′X

n

)
= σ2ΣX′X

to be a valid probability limit. Indeed, notice that

X ′uu′X = (u′X)′(u′X)

=

(
n∑

i=1

uiXi

)′( n∑
j=1

ujXj

)

=
n∑

i=1

n∑
j=1

uiujX
′
iXj.

The summands uiujXiX
′
j are not independent, thus the law of large number doesn’t apply.

But, actually, the mistake arises from an even more fundamental conceptual misunder-
standing regarding the definition of asymptotic variance. Asymptotic variance refers to
the limit (as the sample size n approaches infinity) of the finite-sample variance of a ran-
dom variable. The finite-sample variance of a generic random variable Z is defined as
V (Z) ≡ E[(Z − E[Z])(Z − E[Z])′]. Therefore, given that E[

√
n(β̂ − β)] = 0, the correct

limit characterization of the asymptotic variance for
√
n(β̂ − β) is

AV(β̂) = lim
n→∞

E[
√
n(β̂ − β)

√
n(β̂ − β)′] ̸= plim

(√
n
(
β̂ − β

)√
n
(
β̂ − β

)′)
.

Using the fact that
√
n(β̂ − β) = (X ′X)−1X ′u we can write
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AV(β̂) = lim
n→∞

E[n(X ′X)−1X ′uu′X(X ′X)−1]

= lim
n→∞

E[n(X ′X)−1X ′E[uu′|X]X(X ′X)−1]

= lim
n→∞

E[n(X ′X)−1X ′X(X ′X)−1]σ2

= lim
n→∞

E[n(X ′X)−1]σ2

= lim
n→∞

E

(n−1

n∑
t=1

X ′
tXt

)−1
σ2.

But at this point, we cannot proceed further without introducing additional assumptions.
Typically, limits and expectations do not commute, meaning there is no simple way to
eliminate the limit operator here. This is why directly computing the limit of a finite-sample
variance is not the standard method for determining the asymptotic variance of a random
variable. In the next section, we will derive the asymptotic variance using the conventional
approach, which relies on the central limit theorem.

(b) Derive the asymptotic variance of
√
n(β̂ − β) correctly.

Solution. The OLS estimator can be written as

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ + u) = β + (X ′X)−1X ′u.

Thus

√
n(β̂ − β) =

√
n(X ′X)−1X ′u =

(
n−1

n∑
t=1

X ′
tXt

)−1
√
n

(
n−1

n∑
t=1

X ′
tut

)
.

By the weak law of large numbers and the continuous mapping theorem,(
n−1

n∑
t=1

X ′
tXt

)−1

p−→ E[X ′
tXt]

−1.

Further, by the central limit theorem,

√
n

(
n−1

n∑
t=1

X ′
tut

)
d−→ N (0,E[X ′

tutu
′
tXt]) .

Thus, by Slutsky’s theorem,

√
n(β̂ − β)

d−→ N(0,E[X ′
tXt]

−2E[X ′
tutu

′
tXt]).

Notice that by the law of iterated expectations we can write

E[X ′
tutu

′
tXt] = E[X ′

tE[utu
′
t|Xt]Xt] = σ2E[X ′

tXt].

Therefore the asymptotic variance of
√
n(β̂ − β) is σ2E[X ′

tXt]
−1 = σ2Σ−1

X′X .
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2. [16.31, LNs] Consider the model

yi = x′
iβ + ui,

where (x′
i, ui) are iid with u|xi ∼ N(0, σ2). We want to test H0 : β = β0 against H1 : β ̸= β0

using the statistic

W =
(β̂ − β0)

′X ′X(β̂ − β0)

σ2
.

(a) Is this statistic pivotal? Explain your answer.

Solution. Under the null, yes. Observe that β̂ − β0 = (X ′X)−1X ′u, whence

W = (X ′u)′(X ′Xσ2)−1X ′u.

Notice that X ′u ∼ N(0, X ′Xσ2). Therefore W ∼ χ2
k, which does not depend on (β, σ)′.

(d) Show that

Ŵ =
(β̂ − β0)

′X ′X(β̂ − β0)/k

e′e/(n− k)

has a F (k, n− k) distribution under the null.

Solution. We have already verified that, under the null, when divided by σ2, the numerator
term has a χ2

k distribution. For the denominator, notice that e′e/σ2 = u′Mu/σ2. Spectral
decomposition on M gives M = HΛH ′, where H ′H = In. Thus

e′e

σ2
=

(
H ′u

σ

)′

Λ

(
H ′u

σ

)
=

(
H ′u

σ

)′ [
In−k 0
0 0

](
H ′u

σ

)
.

Let w ≡ H ′u/σ. Notice that w ∼ N(0, In). Partition w = (w′
1, w

′
2)

′, where w1 ∼ N(0, In−k).
It follows that

e′e

σ2
= w′

1w1 ∼ χ2
n−k.

Write

Ŵ =

∼χ2
k︷ ︸︸ ︷

(β̂ − β0)
′X ′X(β̂ − β0)

σ2 /k

e′e

σ2︸︷︷︸
∼χ2

n−k

/(n− k)

∼ F (k, n− k).

Notice that numerator and denominator terms are independent. Indeed, the numerator term
can be written as u′Nu/σ2, while the denominator term can be written as u′Mu/σ2. As N
and M are orthogonal, both terms are orthogonal and hence independent (due to normality).
Therefore Ŵ ∼ F (k, n− k).
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(e) Show that Ŵ asymptotically has a chi-square distribution with k degrees of freedom.

Solution. Consider the above expression for Ŵ . Notice that e′e/(n−k)
p−→ σ2, so the denom-

inator asymptotically converges to 1. Furthermore, observe that the numerator asymptoti-
cally converges in distribution to Z ′[E[xix

′
i]
−1σ2]−1Z/k ∼ χ2

k/k, where Z ∼ N(0,E[xix
′
i]
−1σ2).1

Therefore, by Slutsky, it follows that kŴ
d−→ χ2

k.

3. [16.21, LNs] Suppose the auto-regressive linear model applies to:

yt = ρyt−1 + ut, t = 1, . . . , T

where |ρ| < 1, ut are iid with E(ut) = 0 and E(u2
t ) = σ2.

(a) Show that

[I]:
1√
T

T∑
t=1

yt−1ut
d→ N

(
0,

σ4

1− ρ2

)
and [II]:

1

T

T∑
t=1

y2t−1

p→ σ2

1− ρ2
.

Solution. To solve this problem, I need to introduce the concept of martingale difference
sequences (henceforth MDS), along with a law of large numbers and a central limit theorem
applicable to this class of processes. It’s important to note that the Lindeberg-Feller CLT
cannot be applied here, as {yt−1ut} and {yt−1} are not sequences of independent random
variables.

Definition 1 (Martingale Difference Sequence). Let {xt}∞t=1 denote a sequence of random
scalars with E[xt] = 0 for all t, and Ωt the information set available at date t, including
current and lagged values of {xt}. If E[xt|Ωt−1] = 0 for t = 2, 3, . . . , then {xt} is said to be
a martingale difference sequence (MDS) with respect to {Ωt}.

Theorem 1 (A Law of Large Numbers for a MDS). Let x̄t ≡ T−1
∑T

t=1 xt be the sample
mean from a martingale difference sequence with E|xt|r < M for some r > 1 and M < ∞.

Then x̄t
p−→ 0.

Theorem 2 (A Central Limit Theorem for a MDS). Let {xt}∞t=1 be a scalar martingale differ-
ence sequence with x̄t = T−1

∑T
t=1 xt. Suppose that (a) E[x2

t ] = σ2
t > 0 with T−1

∑T
t=1 σ

2
t →

σ2 > 0, (b) E|xt|r < ∞ for some r > 2 and all t, and (c) T−1
∑T

t=1 x
2
t

p−→ σ2. Then

T 1/2x̄t
d−→ N(0, σ2).

Now we are ready to move on to the proofs.

[I]: For 1
T

∑T
t=1 y

2
t−1

p→ σ2

1−ρ2
, let xt ≡ y2t − E[y2t ] and observe that for all t ≥ 2,

E[xt|Ωt−1] = E[y2t − E[y2t ] | yt−1, yt−2, . . . , y1, y0]

= E[y2t | yt−1, yt−2, . . . , y1, y0]− E[y2t | yt−1, yt−2, . . . , y1, y0] = 0,

1This is a particular case of Exercise 6, item (a). Here, R = Ik and r = β0.
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whence it follows that {xt}∞t=1 is a MDS and hence x̄t−1 ≡ T−1
∑T

t=1 xt−1 the sample mean
from a MDS. Now, assuming E[u4

t ] < ∞, it is possible to show that E[y4t ] < ∞ for all t,
and thus E|xt−1|r < ∞ for r = 2. Therefore, by the law of large numbers for martingale
difference sequences we conclude that

x̄t−1 = T−1

T∑
t=1

(y2t−1 − E[y2t−1]) =
T∑
t=1

y2t−1 − E[y2t−1]
p−→ 0,

from which

T−1

T∑
t=1

y2t−1

p−→ E[y2t−1].

Now, using the lag operator L, observe that since

yt−1 = ρyt−2 + ut−1

= ρLyt−1 + ut−1

we can isolate yt−1 and write

yt−1 = (1− ρL)−1ut−1 =
∞∑
j=0

(ρL)jut−1 =
∞∑
j=0

ρjLjut−1 =
∞∑
j=0

ρjut−1−j,

by standard geometric series and lag operator algebra arguments. Finally, taking the variance
of the expression above we obtain

V [yt−1] = V

[
∞∑
j=0

ρjut−1−j

]
=

∞∑
j=0

ρ2jV [ut−1−j] =
∞∑
j=0

(ρ2)jσ2 =
σ2

1− ρ2
,

where the second equality follows from the independence of ut, and the fourth from the fact
that ρ2 < 1. Therefore we can conclude that

T−1

T∑
t=1

y2t−1

p−→ σ2

1− ρ2
, (1)

as desired.

[II]: For 1√
T

∑T
t=1 yt−1ut

d→ N
(
0, σ4

1−ρ2

)
, let xt ≡ yt−1ut. Then, {xt}∞t=1 is trivially a MDS

with variance E[x2
t ] = σ2E[y2t−1] and with fourth moment E[u4

t ]E[y4t−1] < ∞ by the assumption
that E[u4

t ] < ∞ (which, as argued before, also implies E[y4t ] < ∞ for all t). Hence, if we can
show that

T−1

T∑
t=1

x2
t

p−→ E[x2
t ], (2)

then the CLT for martingale difference sequences can be applied to show that

T 1/2x̄t
d−→ N(0,E[x2

t ]),
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or, equivalently,

1√
T

T∑
t=1

yt−1ut
d−→ N(0, σ2E[y2t−1]) = N

(
0,

σ4

1− ρ2

)
.

To verify (2), notice that

T−1

T∑
t=1

x2
t = T−1

T∑
t=1

u2
ty

2
t−1

= T−1

T∑
t=1

(u2
t − σ2)y2t−1 + T−1

T∑
t=1

σ2y2t−1. (3)

But (u2
t − σ2)y2t−1 is a MDS with finite second moment, so by the law of large numbers for

martingale difference sequences,

T−1

T∑
t=1

(u2
t − σ2)y2t−1

p−→ 0.

It further follows from (1) that

T−1

T∑
t=1

σ2y2t−1 = σ2T−1

T∑
t=1

y2t−1

p−→ σ2 σ2

1− ρ
=

σ4

1− ρ
.

Thus (3) implies

T−1

T∑
t=1

x2
t

p−→ σ4

1− ρ2
,

as desired.

(b) Is the OLS estimator consistent for ρ? Show your calculations.

Solution. Yes. Write

ρ̂ =

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1yt

=

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1(ρyt−1 + ut)

= ρ

(
T∑
t=1

y2t−1

)−1 T∑
t=1

y2t−1 +

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ut

= ρ+

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ut. (4)
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As verified before, yt−1ut is a MDS with finite fourth moments. Thus by the law of large
numbers for martingale difference sequences it follows that(

T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ut
p−→ 0,

whence
ρ̂

p−→ ρ,

as desired.

(c) Find the limiting distribution of
√
T (ρ̂− ρ).

Solution. Using (4), write

√
T (ρ̂− ρ) =

√
T

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ut

=
√
T

(
T∑
t=1

y2t−1

)−1√
T

1√
T

T∑
t=1

yt−1ut

= T

(
T∑
t=1

y2t−1

)−1

1√
T

T∑
t=1

yt−1ut

=

(
T−1

T∑
t=1

y2t−1

)−1

1√
T

T∑
t=1

yt−1ut.

From the results obtained in (a) we have

1

T

T∑
t=1

y2t−1

p→ σ2

1− ρ2
and

1√
T

T∑
t=1

yt−1ut
d→ Z ∼ N

(
0,

σ4

1− ρ2

)
,

whence, by the continuous mapping and Slutsky’s theorems,

√
T (ρ̂− ρ)

d−→
(

σ2

1− ρ2

)−1

Z = N

(
0,

(1− ρ2)2

σ4

σ4

1− ρ2

)
= N(0, 1− ρ2).
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4. [14.7, LNs] Assume that Xi
iid∼ N(θ, 1).

(a) Show that the joint pdf is a special case of an exponential family.

Solution. The single-parameter exponential family is the class of probability distributions
whose probability density function (or probability mass function, in case of discrete distri-
butions) can be expressed as

f(X; θ) = C(θ) exp(A(θ)T (X))h(X),

where C(θ), A(θ) and h(X) are known functions and C(θ) is non-negative. Since Xi, for
i = 1, . . . , n, are i.i.d., the joint pdf of X ≡ (X1, . . . , Xn) is given by

f(X; θ) =
n∏

i=1

(2π)−1/2 exp

(
−(Xi − θ)2

2

)

= (2π)−n/2 exp

(
−1

2

n∑
i=1

(X2
i − 2θXi + θ2)

)

= (2π)−n/2 exp
(
−n

2
θ
)
exp

(
θ

n∑
i=1

Xi

)
exp

(
−1

2

n∑
i=1

X2
i

)
.

By setting

C(θ) ≡ exp

(
θ

n∑
i=1

Xi

)
, A(θ) ≡ θ, T (X) ≡

n∑
i=1

Xi, h(X) ≡ (2π)−n/2 exp

(
−1

2

n∑
i=1

X2
i

)
it becomes clear that this joint pdf is a special case of the exponential family.

(b) Show that the UMP test for H0 : θ ≤ θ0 against H1 : θ > θ0 reject the null when√
n(X̄n − θ0) > c1−α, where c1−α is the 1− α quantile of a standard normal.

Solution. For distributions of the exponential family with A(θ) monotone increasing, there
exists a UMP for testing H0 : θ ≤ θ0 against H1 : θ > θ0 characterized by the critical region

CX = {X | T (X) > k},

where k is determined by α =
∫
CX

f(X; θ0) dx.
2 In particular, from (a) we have A(θ) = θ,

which is clearly monotone increasing, and T (X) =
∑n

i=1 Xi. Therefore the UMP test is
characterized by the critical region

CX =

{
X

∣∣∣∣∣
n∑

i=1

Xi > k

}

=

{
X

∣∣∣∣∣ √n

(
1

n

n∑
i=1

Xi − θ0

)
> k′

}
.

2For further details I refer to Lehmann and Romano’s book “Testing Statistical Hypothesis”. See Theorem
3.4.1 and, more specifically, Corollary 3.4.1. A rigorous reader will note that the test of Corollary 3.4.1 is
actually a randomized test that also involves rejecting the null hypothesis with some probability γ when
T (x) = k. Note, however, that for the particular case of this question, T (X) is continuous when viewed as
a random variable. Therefore, T (X) = k implies a set of measure zero.

https://link.springer.com/book/10.1007/0-387-27605-X
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Under the null, X̄ ≡ 1
n

∑n
i=1Xi ∼ N(θ0,

1
n
) and hence

√
n(X̄− θ0) ∼ N(0, 1). It follows that∫

CX

f(X; θ0) dx = 1− Φ(k′) = α ⇐⇒ k′ = Φ−1(1− α),

which is the 1− α quantile of a standard normal distribution.

(c) Suppose someone discards the even observations and constructs a one-sided test using
averages of the odd observations. Compare the asymptotic power (using Pitman’s drift) of
this test with the test using averages of all observations found in part (b).

Solution. Define the sequence θn = θ0 +
h√
n
of local alternatives. For the test using averages

of all observations we have

√
n(X̄ − θ0) =

√
n(X̄ − θn + θn − θ0)

=
√
n(X̄ − θn) +

√
n(θn − θ0)

=
√
n(X̄ − θn) + h.

Notice that as n → ∞, θn → θ0 and hence
√
n(X̄ − θn)

d−→ N(0, 1) by the central limit

theorem. Therefore
√
n(X̄ − θ0)

d−→ Z + h ∼ N(h, 1), where Z ∼ N(0, 1). The asymptotic
local power is given by

lim
n→∞

P (
√
n(X̄ − θ0) ≥ c) = P (Z + h ≥ c) = P (Z ≥ c− h)

= 1− P (Z < c− h) = 1− Φ(c− h)

= Φ(h− c).

For the one-sided test using averages of the “odd” observations only, suppose, without loss of
generality, that n is even. By discarding the “even” observations we obtain the new statistic

X̄ ′ =
1

(n/2)

n/2∑
i=1

Xi.

By proceeding in the same way as before, we obtain

√
n(X̄ ′ − θ0) =

√
n(X̄ ′ − θn) + h.

Now E[X̄ ′] = θ and V [X̄ ′] = 2/n. Thus, as n → ∞,
√
n(X̄ − θn)

d−→ N(0, 2). Therefore
√
n(X̄ ′ − θ0)

d−→
√
2Z + h ∼ N(h, 2). The asymptotic local power then becomes

lim
n→∞

P (
√
n(X̄ ′ − θ0) ≥ c) = P (

√
2Z + h ≥ c) = P

(
Z ≥ c− h√

2

)
= 1− P

(
Z <

c− h√
2

)
= 1− Φ

(
c− h√

2

)
= Φ

(
h− c√

2

)
.
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Denote δ ≡ h− c. Since
√
2 > 1 and Φ is strictly increasing, it follows that

Φ (δ) > Φ

(
δ√
2

)
∀δ ∈ R.

That is, the test based on the full sample statistic X̄ is (asymptotically) uniformly more
powerful than the test based on the half-sample statistic X̄ ′.

(d) Show that the UMP test for H0 : θ ≥ θ0 against H1 : θ < θ0 reject the null when√
n(X̄n − θ0) < cα. How is cα related to c1−α.

Solution. In this case, the UMP is characterized by the critical region

CX =

{
X

∣∣∣∣∣
n∑

i=1

Xi < k

}

=

{
X

∣∣∣∣∣ √n

(
1

n

n∑
i=1

Xi − θ0

)
< k′

}
.

Therefore ∫
CX

f(X; θ0) dx = Φ(k′) = α ⇐⇒ k′ = Φ−1(α),

which is the α quantile of a standard normal distribution.

Observe that if cα is the α quantile and c1−α the 1 − α quantile of a standard normal
distribution, then Φ(cα) = α, Φ(c1−α) = 1 − α and hence Φ(c1−α) = 1 − Φ(cα) = Φ(−cα).
The last equality follows from the symmetry of the standard normal distribution. Therefore
c1−α = −cα.

5. [16.22, LNs] Consider the population model y = Xβ+u, where u has iid components with
E(ui) = 0 and E(u2

i ) = σ2. Note that (X ′X)1/2(β̂ − β) =
∑n

i=1 aniui for β̂ = (X ′X)−1X ′y.

If the Lindeberg-Feller condition holds, then (X ′X)1/2(β̂ − β)
d−→ N(0, σ2Ik).

(a) Show that the Lindeberg-Feller condition holds if max1≤i≤n∥ani∥ → 0.

Solution. Observe that

(X ′X)1/2(β̂ − β) = (X ′X)1/2(X ′X)−1X ′u

= (X ′X)−1/2X ′u

=

(
n∑

i=1

xix
′
i

)−1/2 n∑
i=1

xiui =
n∑

i=1

(
n∑

j=1

xjx
′
j

)−1/2

xiui.
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Thus ani ≡
(∑n

j=1 xjx
′
j

)−1/2

xi. Let zni ≡ aniui. For any ε,∣∣∣∣∣
n∑

i=1

E[∥zni∥21(∥zni∥ > ε)]

∣∣∣∣∣ =
n∑

i=1

E[∥aniui∥21(∥aniui∥ > ε)]

=
n∑

i=1

E[∥ani∥2u2
i1(∥ani∥ · |ui| > ε)]

≤
n∑

i=1

E
[
∥ani∥2u2

i1

(
|ui| · max

1≤i≤n
∥ani∥ > ε

)]
< ∞.

Therefore the dominated convergence theorem holds and

0 ≤ lim
n→∞

n∑
i=1

E[∥zni∥21(∥zni∥ > ε)] ≤ lim
n→∞

n∑
i=1

E
[
∥ani∥2u2

i1

(
|ui| · max

1≤i≤n
∥ani∥ > ε

)]
=

n∑
i=1

E
[
lim
n→∞

∥ani∥2u2
i1

(
|ui| · max

1≤i≤n
∥ani∥ > ε

)]
→ 0,

provided max1≤i≤n∥ani∥ → 0, whence it follows that

lim
n→∞

n∑
i=1

E[∥zni∥21(∥zni∥ > ε)] = 0,

as desired.

(b) For the special case yi = β0 + x1iβ1 + ui, assume that x1n and x2
1n are bounded. Show

that the Lindeberg-Feller condition holds if max1≤i≤n∥x1i∥ = o(n1/2).

Solution. In this case we have xi = (1, x1i) and

n∑
j=1

xjx
′
j =

[
ι′

X ′
1

] [
ι X1

]
=

[
ι′ι ι′X1

X ′
1ι X ′

1X1

]
=

[
n

∑n
i=1 x1i∑n

i=1 x1i

∑n
i=1 x

2
1i

]
,

where ι is a n-dimensional vector of ones. Thus(
n∑

j=1

xjx
′
j

)−1

=
1

n
∑n

i=1 x
2
1i − (

∑n
i=1 x1i)

2

[ ∑n
i=1 x

2
1i −

∑n
i=1 x1i

−
∑n

i=1 x1i n

]
=

n

n
∑n

i=1 x
2
1i − (

∑n
i=1 x1i)

2

[
n−1

∑n
i=1 x

2
1i −n−1

∑n
i=1 x1i

−n−1
∑n

i=1 x1i 1

]
=

1∑n
i=1 x

2
1i − n−1 (

∑n
i=1 x1i)

2

[
n−1

∑n
i=1 x

2
1i −n−1

∑n
i=1 x1i

−n−1
∑n

i=1 x1i 1

]
=

1

nx2
1n − nx2

1n

[
x2
1n −x1n

−x1n 1

]
.

https://en.wikipedia.org/wiki/Dominated_convergence_theorem
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Therefore

∥ani∥ =

x′
i

(
n∑

j=1

xjx
′
j

)−1/2( n∑
j=1

xjx
′
j

)−1/2

xi

1/2

=

x′
i

(
n∑

j=1

xjx
′
j

)−1

xi

1/2

=

[
1

nx2
1n − nx2

1n

·
[
1 x1i

] [ x2
1n −x1n

−x1n 1

] [
1
x1i

]]1/2

=

[
1

nx2
1n − nx2

1n

·
(
x2
1n − 2x1nx1i + x2

1i

)]1/2

=

[
1

x2
1n − x2

1n

·

(
x2
1n

n
− 2x1n

x1i

n
+

x2
1i

n

)]1/2

=

{
1

x2
1n − x2

1n

·

[
x2
1n

n
− 2x1n

x1i

n
+

(
x1i√
n

)2
]}1/2

≤

{
1

x2
1n − x2

1n

·

[
x2
1n

n
+ 2x1n

max1≤i≤n∥x1i∥√
n

+

(
max1≤i≤n∥x1i∥√

n

)2
]}1/2

.

But observe that since x2
1n is bounded, x2

1n/n → 0; and, since max1≤i≤n∥x1i∥ = o(n1/2),
max1≤i≤n∥x1i∥/

√
n → 0. Then

0 ≤ lim
n→∞

∥ani∥

≤ lim
n→∞

{
1

x2
1n − x2

1n

·

[
x2
1n

n
+ 2x1n

max1≤i≤n∥x1i∥√
n

+

(
max1≤i≤n∥x1i∥√

n

)2
]}1/2

→ 0,

whence it follows that ∥ani∥ → 0 and, hence, max1≤i≤n∥ani∥ → 0. Thus, from the result
proved in (a), the Lindeberg-Feller condition holds.
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6. [16.33, LNs] Consider the model:

yt = x′
tβ + ut,

where xt = (1, t), β = (β1, β2), ui are i.i.d. with E(ut) = 0, V (ut) = σ2, and E|ut|3 = C.
Hint: It may be helpful to know

∑N
t=1 t

2 = 1
6
N(N + 1)(2N + 1).

(a) Show that the OLS estimator β̂N is unbiased for β = (β1, β2)
′.

Solution. The OLS estimator can be written as

β̂N =

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtyt

)

=

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xt(x
′
tβ + ut)

)

=

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtx
′
t

)
β +

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtut

)

= β +

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtut

)
.

Thus, taking the unconditional expectation of β̂N we obtain

β̂N = E

β +

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtut

)
= β +

(
N∑
t=1

xtx
′
t

)−1( N∑
t=1

xtE[ut]

)
= β,

where the second equality follows from the linearity of the expectation operator and the fact
that xt = (1, t) is nonstochastic.

(b) Find the limiting distribution of N1/2(β̂2,N − β2). Explain your answer.

Solution. The limiting distribution will be a constant, degenerated at zero, distribution.
To see why, recall that usual asymptotic arguments rely on the convergence in probability
of N−1

∑N
t=1 xtx

′
t to a nonsingular matrix Q and in distribution of (1/

√
N)
∑N

t=1 xtut to a

N(0, σ2Q) random variable, implying that
√
N(β̂−β)

d−→ N(0, σ2Q−1). To see why this same
argument cannot be used for a deterministic time trend, note that

β̂ − β =

[∑N
t=1 1

∑N
t=1 t∑

t=1 t
∑N

t=1 t
2

]−1 [∑
t=1 ut∑
t=1 tut

]
.
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It is straightforward to show by induction that

N∑
t=1

t = N(N + 1)/2 and
N∑
t=1

t2 = T (T + 1)(2T + 1)/6.

Thus

N1/2(β̂ − β) =
√
N

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]−1 [∑N
t=1 ut∑N
t=1 tut

]
=

√
N

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]−1√
N

1√
N

[∑N
t=1 ut∑N
t=1 tut

]
= N

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]−1
[

1√
N

∑N
t=1 ut

1√
N

∑N
t=1 tut

]

=

[
1 (N + 1)/2

(N + 1)/2 (N + 1)(2N + 1)/6

]−1
[

1√
N

∑N
t=1 ut

1√
N

∑N
t=1 tut

]
.

Taking the inverse we obtain(
N−1

N∑
t=1

xtx
′
t

)−1

=

[
1 (N + 1)/2

(N + 1)/2 (N + 1)(2N + 1)/6

]−1

=

[
4N+2
N−1

6
1−N

6
1−N

12
N2−1

]
.

Thus

N1/2(β̂ − β) =

(
N−1

N∑
t=1

xtx
′
t

)−1

1√
N

N∑
t=1

xtut

=

[
4N+2
N−1

6
1−N

6
1−N

12
N2−1

][ 1√
N

∑N
t=1 ut

1√
N

∑N
t=1 tut

]

=

[
4N+2
N−1

1√
N

∑N
t=1 ut +

6
1−N

1√
N

∑N
t=1 tut

6
1−N

1√
N

∑N
t=1 ut +

12
N2−1

1√
N

∑N
t=1 tut

]
.

Therefore,

N1/2(β̂2,N − β2) =
6

1−N

1√
N

N∑
t=1

ut +
12

N2 − 1

1√
N

N∑
t=1

tut.

We will see in the next item that both 1√
N

∑N
t=1 ut and 1√

N

∑N
t=1 tut have well-defined,

nondegenerate, limiting distributions. From this it becomes easy to see that whatever the
asymptotic distribution of 1√

N

∑N
t=1 ut and

1√
N

∑N
t=1 tut are, as N → ∞ both 6/(1−N) → 0

and 12/(N2 − 1) → 0; therefore, so will N1/2(β̂2,N − β2) → 0.
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(c) Find the limiting joint distribution of AT (β̂ − β), where

AN =

[
N1/2 0
0 N3/2

]
,

where β̂ is the OLS estimator of β.

Solution.

AN(β̂ − β) = AN

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]−1 [∑N
t=1 ut∑N
t=1 tut

]
= AN

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]−1

ANA
−1
N

[∑N
t=1 ut∑N
t=1 tut

]
=

(
A−1

N

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]
A−1

N

)−1

A−1
N

[∑N
t=1 ut∑N
t=1 tut

]
.

Notice that

A−1
N =

[
N−1/2 0

0 N−3/2

]
.

Thus, for the first term, we have

A−1
N

[
N N(N + 1)/2

N(N + 1)/2 N(N + 1)(2N + 1)/6

]
A−1

N =

[
N−1N N−2N(N + 1)/2

N−2N(N + 1)/2 N−3N(N + 1)(2N + 1)/6

]
=

[
1 (N + 1)/2N

(N + 1)/2N (N + 1)(2N + 1)/6N2

]
N→∞−−−→

[
1 1/2
1/2 1/3

]
=: Q. (5)

Turning to the second term, notice that

A−1
N

[∑N
t=1 ut∑N
t=1 tut

]
=

[
N−1/2 0

0 N−3/2

] [∑N
t=1 ut∑N
t=1 tut

]
=

[
N−1/2

∑N
t=1 ut

N−3/2
∑N

t=1 tut

]
=

[
N−1/2

∑N
t=1 ut

N−1/2
∑N

t=1(t/N)ut

]
.

For the first element, notice that since ut are i.i.d. with mean zero and variance σ2, the
central limit theorem ensures that(

1/
√
N
) N∑

t=1

ut
d−→ N(0, σ2).

For the second element, observe that {(t/N)ut} is a martingale difference sequence that sat-
isfies the conditions for the central limit theorem for matingale difference sequences. Specif-
ically, its variance is

σ2
t = E[(t/N)2u2

t ] = σ2 · (t2/N2),

where

(1/N)
N∑
t=1

σ2
t = σ2(1/N3)

N∑
t=1

t2
N→∞−−−→ σ2/3.
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Furthermore, (1/T )
∑T

t=1[(t/N)ut]
2 p−→ σ2/3. To verify this claim, notice that

E

((1/N)
N∑
t=1

[(t/N)ut]
2 − (1/N)

N∑
t=1

σ2
t

)2
 = E

((1/N)
N∑
t=1

[(t/N)ut]
2 − (1/N)

N∑
t=1

(t2/N2)σ2

)2


= E

((1/N)
N∑
t=1

(t/N)2(u2
t − σ2)

)2


= E

[
(1/N)6

N∑
t=1

t4(u2
t − σ2)2

]

= (1/N)6
N∑
t=1

t4E
[
(u2

t − σ2)2
]

=

[
(1/N)6

N∑
t=1

t4

]
E
[
(u2

t − σ2)2
]
.

One can show by induction that

(1/Nν+1)
N∑
t=1

tν
N→∞−−−→ 1/(ν + 1).

Therefore

N ×

[
(1/N)6

N∑
t=1

t4

]
E
[
(u2

t − σ2)2
] N→∞−−−→ 1

5
E
[
(u2

t − σ2)2
]
,

which implies [
(1/N)6

N∑
t=1

t4

]
E
[
(u2

t − σ2)2
] N→∞−−−→ 0.

Therefore

(1/N)
N∑
t=1

[(t/N)ut]
2 − (1/N)

N∑
t=1

σ2
t

m.s.−−→ 0,

whence it follows that

(1/N)
N∑
t=1

[(t/N)ut]
2 p−→ σ2/3.

Hence, (1/
√
N)
∑N

t=1(t/N)ut satisfies the central limit theorem for martingale difference
sequences and thus

(1/
√
N)

N∑
t=1

(t/N)ut
d−→ N(0, σ2/3).
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Finally, consider the joint distribution of
(
N−1/2

∑N
t=1 ut, N

−1/2
∑N

t=1(t/N)ut

)′
. Any linear

combination of these elements takes the form

α1

(
N−1/2

N∑
t=1

ut

)
+ α2

(
N−1/2

N∑
t=1

(t/N)ut

)
= N−1/2

N∑
t=1

[α1 + α2(t/N)]ut.

Observe that [α1+α2(t/N)]ut is also a martingale difference sequence with positive variance
given by σ2[α2

1 + 2α1α2(t/N) + α2
2(t/T )

2] satisfying

N−1

N∑
t=1

σ2[α2
1 + 2α1α2(t/N) + α2

2(t/N)2] → σ2[α1 + 2α1α2(1/2) + α2
2(1/3)] = α′(σ2Q)α

for α = (α1, α2)
′. Furthermore, it is easy to show that

N−1

N∑
t=1

[α1 + α2(t/N)]2u2
t

p−→ α′(σ2Q)α.

Therefore, the central limit theorem for martingale difference sequences implies that any

linear combination of two elements in the vector
(
N−1/2

∑N
t=1 ut, N

−1/2
∑N

t=1(t/N)ut

)′
con-

verges in distribution to N(0, α′(σ2Q)α) = α′N(0, σ2Q). Thus, by the Cramér-Wold device,
we must have (

N−1/2

N∑
t=1

ut, N
−1/2

N∑
t=1

(t/N)ut

)′
d−→ N(0, σ2Q).

From this, by employing the continuous mapping and Slutsky’s theorem and recalling the
limit obtained in (5), we can finally conclude that

AN(β̂ − β) =

[
N1/2(β̂1 − β)

N3/2(β̂2 − β)

]
=

[
1 (N + 1)/2N

(N + 1)/2N (N + 1)(2N + 1)/6N2

]−1 [
N−1/2

∑N
t=1 ut

N−1/2
∑N

t=1(t/N)ut

]
d−→ Q−1Z ∼ N(0, Q−1σ2QQ−1) = N(0, Q−1σ2),

where Z ∼ N(0, σ2Q) and Q is as defined in (5).


