
Statistics II Problem Set 4
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli September 14, 2023

1. Let xi be iid with pdf g(xi, θ), where θ = (θ1, θ2).

(a) Find the asymptotic distribution of the MLE θ̂n = (θ̂1, θ̂2).

Solution. Let θ∗ = (θ∗1, θ
∗
2) be the true parameter vector. The maximum likelihood estimator

θ̂, being the interior solution to the problem of maximizing the sample log-likelihood function
Ln(θ) = n−1

∑n
i=1 ln g(xi, θ), satisfies the first order conditions

n−1

n∑
i=1

∇θ ln g(xi, θ̂) = 0.

Assuming ln g(xi, θ) is C
2, the mean value theorem applies to the LHS and we have

n−1

n∑
i=1

∇θ ln g(xi, θ
∗) +

(
n−1

n∑
i=1

∇θθ ln g(xi, θ̄)

)
(θ̂ − θ∗) = 0,

for some mean value θ̄ “between” θ̂ and θ∗. By multiplying the above expression by
√
n and

solving for
√
n(θ̂ − θ∗) we obtain

√
n(θ̂ − θ∗) = −

(
n−1

n∑
i=1

∇θθ ln g(xi, θ̄)

)−1
1√
n

m∑
t=1

∇θ ln g(xi, θ
∗).

Since θ̄ is “between” θ∗ and θ̂ and θ̂
p−→ θ∗, it follows that θ̄

p−→ θ∗. Thus, under standard
regularity conditions,(

n−1

n∑
i=1

∇θθ ln g(xi, θ̄)

)−1

p−−−−−−−→
LLN + CMT

E[∇θθ ln f(wt; θ
∗)]−1 ≡ H(θ∗)−1.

Furthermore,
1√
n

m∑
t=1

∇θ ln g(xi, θ
∗)

d−−→
CLT

N(0, J),

where J ≡ E[∇θ ln g(xi, θ
∗) (∇θ ln g(xi, θ

∗))′]. Therefore, by Slutsky’s theorem, we conclude

√
n(θ̂ − θ∗)

d−→ −H(θ∗)−1N(0, J) = N(0, H(θ∗)−1JH(θ∗)−1)

= N(0, J−1),

where the last equality follows from the information matrix equality, H(θ∗) = −J .
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(b) Find the asymptotic distribution of the MLE θ̂1,n for θ1 when we know θ2.

Solution. When θ2 = θ∗2 is known, the log-likelihood function Ln becomes a univariate func-
tion of θ1; that is, Ln(θ) = Ln(θ1). The maximum likelihood estimator θ̂1, being the interior
solution to the problem of maximizing Ln(θ1), satisfies the first order condition

n−1

n∑
i=1

d ln g(xi, θ̂1)

dθ1
= 0.

Again by the mean value theorem we have

n−1

n∑
i=1

d ln g(xi, θ
∗
1)

dθ1
+

(
n−1

n∑
i=1

d2 ln g(xi, θ̄1)

dθ̄21

)
(θ̂1 − θ∗1) = 0

for some mean value θ̄1 between θ̂1 and θ∗1. By multiplying the above expression by
√
n and

solving for
√
n(θ̂1 − θ∗1) we obtain

√
n(θ̂1 − θ∗1) = −

(
n−1

n∑
i=1

d2 ln g(xi, θ̄1)

dθ̄21

)−1
1√
n

n∑
i=1

ln g(xi, θ
∗
1).

By arguments similar to those presented in (a), it follows that

√
n(θ̂1 − θ∗1)

d−→ N

0,E

[(
d ln g(xi, θ

∗
1)

dθ1

)2
]−1
 = N(0, J−1

1 ).

(c) Compare your answers in itens (a) and (b). Comment.

Solution. Observe that in (a) we have

J =

 E
[(

∂ ln g(xi,θ
∗)

∂θ1

)2]
E
[
∂ ln g(xi,θ

∗)
∂θ1

∂ ln g(xi,θ
∗)

∂θ2

]
E
[
∂ ln g(xi,θ

∗)
∂θ1

∂ ln g(xi,θ
∗)

∂θ2

]
E
[(

∂ ln g(xi,θ
∗)

∂θ2

)2]
 ≡

[
J1 J2
J2 J3

]
,

whence

J−1 =
1

J1J3 − J2
2

[
J3 −J2
−J2 J1

]
.

Therefore,

Avar(θ̂1) =
J3

J1J3 − J2
2

.

In (b),
Avar(θ̂1) = J−1

1 .
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Since variances are always non-negative,

J3
J1J3 − J2

2

=
1

J1 − J2
2/J3︸ ︷︷ ︸
≥0

≥ 1

J1
.

So, in general, the asymptotic variance of θ̂1 under unknown θ2 is greater than it is under
known θ2, being equal only when Acov[θ̂1, θ̂2] = J2 = 0. Intuitively, this is a natural result to
expect, since when one of the parameters of interest that was previously unknown becomes
known, the general uncertainty of the problem of estimating θ̂1 reduces, which takes the form
of a reduction in variance. This, of course, provided θ2 is somehow related to θ̂1; J2 ̸= 0.

2. [10.4, LNs] Let W (X) be an unbiased estimator of θ.

(a) Show that if W (X) is MVUE (minimum variance unbiased estimator), then it is unique.

Solution. Suppose W ′ is another MVUE, and consider the estimator W ∗ = 1
2
(W+W ′). Note

that Eθ[W
∗] = θ and

Vθ[W
∗] = Vθ

[
1

2
W +

1

2
W ′
]

=
1

4
Vθ[W ] +

1

4
Vθ[W

′] +
1

2
Covθ[W,W ′]

≤ 1

4
Vθ[W ] +

1

4
Vθ[W

′] +
1

2
(Vθ[W ]Vθ[W

′])1/2 = Vθ[W ].

But if the above inequality is strict, then the MVUE property of W is contradicted, so we
must have equality for all θ. Since the inequality is an application of Cauchy-Schwartz, we
can have equality only if W ′ = a(θ)W + b(θ). Now using properties of covariance, we have

Covθ[W,W ′] = Covθ[W,a(θ)W + b(θ)] = Covθ[W,a(θ)W ] = a(θ)Vθ[W ],

but Covθ[W,W ′] = Vθ[W ], since equality must hold in the previous inequality. Hence a(θ) =
1 and, since Eθ[W

′] = θ, we must have b(θ) = 0 and W = W ′, showing that W is unique.

(b) Show that W (X) is MVUE if and only if it is uncorrelated with all unbiased estimators
U of zero (i.e., EθU = 0 for any θ).

Solution. If Cov[W,U ] = 0 for any unbiased estimator U of θ, then in particular, for any
unbiased estimator W ′ of W and U = W −W ′, we have Cov[W,W −W ′] = 0. Observe that

V [W ′] = V [U −W ] = V [W ]− 2Cov[W,U ] + V [U ] = V [W ] + V [U ] ≥ V [W ].

That is, W is MVUE. Conversely, suppose W is MVUE and we have another estimator U
that satisfies Eθ[U ] = 0 for all θ. The estimator

W ′′ = W + αU,
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where α is a constant, satisfies Eθ[W
′′] = θ and hence is also an unbiased estimator of θ.

The variance of W ′′ is

Vθ[W
′′] = Vθ[W + αU ] = Vθ[W ] + 2αCovθ[W,U ] + α2Vθ[U ].

If for some θ = θ0 we have Covθ0 [W,U ] < 0, then we can make 2αCovθ0 [W,U ]+α2Vθ0 [U ] < 0
by choosing α ∈ (0,−2Covθ0 [W,U ]/Vθ0 [U ]). Hence W ′′ will be better than W at θ = θ0,
contradicting W being MVUE. A similar argument will show that if Covθ0 [W,U ] > 0 for any
θ0, W also cannot be MVUE. Therefore W must satisfy Covθ[W,U ] = 0 for all θ, for any U
satisfying Eθ[U ] = 0.

3. [R1-R5, Ch.15, Goldberger] Prove the rules R1-R6 from Chapter 15 of Golberger.
Throughout we suppose that the n×1 random vector y has expectation vector E[y] = µ and
variance matrix V [y] = Σ, and write ε = y − µ.

(R1) Let z = g + h′y, where the scalar g and the n × 1 vector h are constants. Then
E[z] = g + h′µ and V [z] = h′Σh.

Solution. From linearity of the expectation operator,

E[z] = E[g + h′y] = E[g] + E[h′y] = g + h′E[y] = g + h′µ.

Further, let z∗ = z − E[z]. Then z∗ = h′y − h′µ = h′(y − µ) = h′ε, and z∗2 = (h′ε)2 =
(h′ε)(h′ε) = h′εε′h. So

V [z] = E[z∗2] = E[h′εε′h] = h′[εε′]h = h′V [ε]h = h′Σh.

(R2) Let z = g+Hy, where the k× 1 vector g and the k×n matrix H are constants. Then
the k × 1 random vector z has E[z] = g +Hµ and V [z] = HΣH ′.

Solution. From linearity of the expectation operator,

E[z] = E[g +Hy] = E[g] + E[Hy] = g +HE[y] = g +Hµ.

Further, let z∗ = z − E[z]. Then z∗ = H(y − µ) = Hε, and z∗z∗
′
= Hεε′H ′. So

V [z] = E[z∗z∗′ ] = E[Hεε′H ′] = HE[εε′]H ′ = HΣH ′.
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(R3) Let W = yy′. Then the n× n random matrix W has expectation E[W ] = Σ + µµ′.

Solution. Write yy′ = (µ+ ε)(µ+ ε)′ = µµ′ + µε′ + εµ′ + εε′, which, since µ is constant and
E[ε] = 0, implies E[yy′] = µµ′ + Σ.

(R4) Let w = y′y. Then the scalar random variable w has expectation E[w] = tr(Σ) + µ′µ.

Solution. Write y′y = tr(y′y) = tr(yy′) = tr(W ), so

E[y′y] = E[tr(W )] = tr(E[W ]) = tr(Σ + µµ′)

= tr(Σ) + tr(µµ′) = tr(Σ) + tr(µ′µ) = tr(Σ) + µ′µ,

using the facts that trace is a linear operator, and that if AB and BA are both square
matrices, then tr(AB) = tr(BA).

(R5) Let w = y′Ty, where the n× n matrix T is constant. Then the random variable w has
expectation E[w] = tr(TΣ) + µ′Tµ.

Solution. Write y′Ty = tr(y′Ty) = tr(Tyy′) = tr(TW ). Then

E[y′Ty] = E[tr(TW )] = tr(E[TW ]) = tr[TE[W ]]

= tr(T (Σ + µµ′)) = tr(TΣ) + tr(Tµµ′)

= tr(TΣ) + µ′Tµ.

(R6) Let z1 = g1 +H1y, z2 = g2 +H2y, where the m1 × 1 vector g1, the m2 × 1 vector g2,
the m1 ×n matrix H1, and the m2 ×n matrix H2 are constants. Then Cov[z1, z2] = H1ΣH

′
2.

Solution. Let z∗1 = z1 − E[z1] = H1ε, and z∗2 = z2 − E[z2] = H2ε. Then z∗1z
∗′
2 = H1εε

′H ′
2, so

Cov[z1, z2] = E[z∗1z∗
′

2 ] = H1E[εε′]H ′
2 = H1ΣH

′
2.

4. [7.11, LNs] Consider the univariate Lindeberg-Feller CLT. Let the array Xn,m, m =
1, . . . , n, be independent zero mean random variables; if

∑n
m=1 E[X2

n,m] → σ2, and for all

ε > 0, limn→∞
∑n

m=1 E[X2
n,mI(|Xn,m| > ε)] = 0, then

∑n
t=1 Xn,t

d−→ N(0,Σ).

(a) Give the definition of convergence in distribution: Sn
d−→ S.

Solution. A sequence S1, S2, . . . of random vectors of dimension k ∈ N converges in distri-
bution to a random vector S of dimension k if at all continuity points s ∈ Rk of the joint

distribution FS(·), limn→∞ FSn(s) = FS(s). In this case, we denote Sn
d−→ S.
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(b) Prove the Lyapunov condition: if there exists δ > 0 such that limn→∞
∑n

m=1 E[|Xn,m|2+δ] =
0, then limn→∞

∑n
m=1 E[X2

n,mI(|Xn,m| > ε)] = 0. (In practice, we often take δ = 1).

Solution. Suppose there exists δ > 0 such that limn→∞
∑n

m=1 E[|Xn,m|2+δ] = 0. It follows
that

lim
n→∞

n∑
m=1

E[X2
n,mI(|Xn,m| > ε)] = lim

n→∞

n∑
m=1

E
[
|Xn,m|2+δ I(|Xn,m|δ > εδ)

|Xn,m|δ

]
≤ lim

n→∞

n∑
m=1

E
(
|Xn,m|2+δ 1

εδ

)
=

1

εδ
lim
n→∞

n∑
m=1

E[|Xn,m|2+δ]︸ ︷︷ ︸
=0

= 0.

Therefore,

lim
n→∞

n∑
m=1

E[X2
n,mI(|Xn,m| > ε)] = 0.

(c) For each n, let Yn,m, 1 ≤ m ≤ n, be independent k-dimensional random vectors with
E[Yn,m] = 0. Suppose that

∑n
m=1 E[Yn,mY

′
n,m] → Σ and, for all ε > 0,

lim
n→∞

n∑
m=1

E[∥Yn,m∥2I(∥Yn,m∥ > ε)] = 0.

Show that Sn =
∑n

t=1 Yn,m
d−→ N(0,Σ).

Solution. Take any k-dimensional α ̸= 0 and denote Zn,m ≡ α′Yn,m. Since Yn,m, 1 ≤ m ≤ n,
are independent, then Zn,m, 1 ≤ m ≤ n, are independent. Note that Z2

n,m = α′(Yn,mY
′
n,m)α,

so we have

lim
n→∞

n∑
m=1

E[Z2
n,m] = lim

n→∞

n∑
m=1

E[α′(Yn,mY
′
n,m)α] = lim

n→∞

n∑
m=1

α′E[Yn,mY
′
n,m]α

′

= lim
n→∞

α′

(
n∑

m=1

E[Yn,mY
′
n,m]

)
α = α′

(
lim
n→∞

E[Yn,mY
′
n,m]
)
α

= α′Σα.

Moreover, by the Cauchy-Schwarz inequality, we have |Zn,m| = |α′Yn,m| ≤ ∥α∥∥Yn,m∥. Thus,
if I(|α′Yn,m| > ε) = 1, then I(∥α∥∥Yn,m∥ > ε) = 1. This implies that

I(|α′Yn,m| > ε) ≤ I(∥Yn,m∥ > ε/∥α∥).
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Finally,

lim
n→∞

n∑
m=1

E[Z2
n,mI(|Zn,m| > ε)] = lim

n→∞

n∑
m=1

E[(α′Yn,m)
2I(|α′Yn,m| > ε)]

≤ lim
n→∞

n∑
m=1

E[(∥α∥∥Yn,m∥)2I(∥Yn,m∥ > ε/∥α∥)]

= ∥α∥2 lim
n→∞

n∑
m=1

E[∥Yn,m∥2I(∥Yn,m∥) ≥ ε/∥α∥]︸ ︷︷ ︸
=0

= 0.

Therefore, by the univariate Lindeberg-Feller CLT,

α′

(
n∑

m=1

Yn,m

)
=

n∑
m=1

α′Yn,m =
n∑

m=1

Zn,m
d−→ N(0, α′Σα).

Let S be a random vector with distribution N(0,Σ). By the definition of the multivariate

normal distribution, α′S ∼ N(0, α′Σα). Thus, we have α′Sn
d−→ α′S. Since α ̸= 0 is arbitrary,

it follows by the Crámer-Wold device that Sn
d−→ S; that is,

∑n
m=1 Yn,m

d−→ N(0,Σ).

(d) Propose a multivariate version of the Liapunov’s theorem.

Solution. If there exists δ > 0 such that

lim
n→∞

n∑
m=1

E[∥Yn,m∥2+δ] = 0,

then limn→∞
∑n

m=1 E[∥Yn,m∥2I(∥Yn,m∥ > ε)] = 0. For a proof, suppose there exists δ > 0
such that limn→∞

∑n
m=1 E[∥Yn,m∥2+δ] = 0. It follows that

lim
n→∞

n∑
m=1

E[∥Yn,m∥2I(∥Yn,m∥ > ε)] = lim
n→∞

n∑
m=1

E
[
∥Yn,m∥2+δ I(∥Yn,m∥δ > εδ)

∥Yn,m∥δ

]
≤ lim

n→∞

n∑
m=1

E
[
∥Yn,m∥2+δ 1

εδ

]
=

1

εδ
lim
n→∞

n∑
m=1

E[∥Yn,m∥2+δ]︸ ︷︷ ︸
=0

= 0.

Therefore limn→∞
∑n

m=1 E[∥Yn,m∥2I(∥Yn,m∥ > ε)] = 0, as desired.
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5. [16.29, LNs] Consider the regression y = Xβ + u, where E[u|X] = 0 and V [u|X] = σ2IN
with unknown σ2.

(a) Find the Wald statistic for H0 : Rβ − r = 0. Derive its distribution under H0.

Solution. Let R be a full rank q × k matrix. The Wald statistic for H0 : Rβ − r = 0 is

W = (Rβ̂ − r)′V̂ −1

Rβ̂
(Rβ̂ − r) =

√
n(Rβ̂ − r)′V̂ −1

Rβ

√
n(Rβ̂ − r),

where V̂Rβ̂ is some (consistent) covariance matrix estimator for Rβ̂ and V̂Rβ ≡ nV̂Rβ̂.

We know that
√
n(β̂ − β)

d−→ N(0,E[xix
′
i]
−1σ2). Under the null, Rβ = r. Therefore, by the

multivariate delta method,

√
n(Rβ̂ − r) =

√
n(Rβ̂ −Rβ)

d−→
H0

RN(0,E[xix
′
i]
−1σ2) = N(0, RE[xix

′
i]
−1R′σ2︸ ︷︷ ︸

≡VRβ̂

) ≡ Z.

Since V̂Rβ̂

p−→ VRβ, it follows by the continuous mapping theorem and Slutsky’s theorem that

W
d−→
H0

Z ′[RE[xix
′
i]
−1R′σ2]−1Z ∼ χ2

q.

Thus the Wald statistic for H0 : Rβ − r = 0 is asymptotically chi-squared distributed with
q degrees of freedom.

(b) Show that the Wald statistic for Rβ − r = 0 equals the largest Wald statistic among all
one-dimensional tests for restrictions of the form c′(Rβ − r) = 0. Comment.

Solution. The Wald statistic for restrictions of the form c′(Rβ − r) = 0 is

Wc = [c′(Rβ̂ − r)]′V̂ −1

c′Rβ̂
c′(Rβ̂ − r).

Notice that
V̂c′Rβ̂ = c′V̂Rβ̂c,

Write

Wc = [c′(Rβ̂ − r)]′[c′V̂Rβ̂c]
−1c′(Rβ̂ − r)

=
[c′(Rβ̂ − r)]′c′(Rβ̂ − r)

c′V̂Rβ̂c

=
[c′(Rβ̂ − r)]2

c′V̂Rβ̂c

=
[v′V̂

−1/2

Rβ̂
(Rβ̂ − r)]2

v′v

(Cauchy-Schwartz) ≤
v′v[V̂

−1/2

Rβ̂
(Rβ̂ − r)]′V̂

−1/2

Rβ̂
(Rβ̂ − r)

v′v

= (Rβ̂ − r)′V̂ −1

Rβ̂
(Rβ̂ − r) = W,
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where v = V̂
1/2

Rβ̂
c and V̂

1/2

Rβ̂
is such that V̂

1/2

Rβ̂
V̂

1/2

Rβ̂
= V̂Rβ̂.

Observe that, in particular, one could set c = ei to be a canonical selector vector that selects
the i-th restriction in Rb − r. Suppose instead of the original procedure of jointly testing
all the restrictions, H0 : Rb − r = 0, one proposes a new different procedure: testing each
restriction separately, by performing a sequence of q independent tests H0 : e

′
i(Rb− r) = 0,

i = 1, . . . , q, with associated Wald statistic Wi, and then claiming that the joint restrictions
are rejected if at least one of the separate tests rejects the null. The above result tells us
that Wi ≤ W for all i = 1, . . . , q. We reject the null when, for a given 1− α quantile k, the
Wald statistic is greater than k. Thus for some i and some α we could have quantiles k1 and
kq such that k1 < Wi < W < kq, where k1 and kq are the 1 − α quantiles of the χ2

1 and χ2
q

distributions, respectively. In this case, the new procedure would reject the null, while the
original one would not. This shows that the new proposed procedure is problematic. Indeed,
it could even be used for cheating: for example, one could purposely seek a significance
level such that k1 < Wi < W < kq for some i so that we reject the null based on the new
procedure when actually — based on the original correct one — we should not!

6. Consider the model
yi = x′

iβ + ui

where (x′
i, ui) are iid with ui|xi have the density f(u) ∈ C2 (with support −∞ < u < ∞).

Assume that

E[U ] =

∫ ∞

−∞
uf(u) = 0

and V [U ] = E[U2] =

∫ ∞

−∞
u2f(u) = σ2.

(a) Use transformation of variables to show that the (conditional) pdf of yi|xi is given by
g(yi|xi) = f(yi − x′

iβ).

Solution. Recall that if a continuous random variableX has pdf fX , then an increasing 1-to-1

transformation Y = h(X) of this random variable has pdf fX(h
−1(y)) · |∂h

−1(y)
∂y

|. Here yi is an
increasing one-to-one transformation of ui, which has density f . The inverse transformation

is h−1(u) = u−x′
iβ. Therefore the pdf of yi is f(h

−1(yi)) · |∂h
−1(yi)
∂yi

| = f(yi−x′
iβ) = f(ui).

(b) Find the likelihood of y = (y1, . . . , yn) conditional on X = (x1, . . . , xn)
′.

Solution. The likelihood is L(β) =
∏n

i=1 f(yi − x′
iβ).

(c) State the Gauss-Markov theorem.

Solution. In the homoskedastic linear regression model, if β̃ is a linear unbiased estimator of
β, then V [β̃|X] ≥ σ2(X ′X)−1.
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(d) We will show in item (f) that the asymptotic variance of
√
n(β̃−β∗) can be smaller than

the asymptotic variance of
√
n(β̂ − β∗), where β̃ is the MLE and β̂ is the OLS estimator.

Explain why this result does not contradict the Gauss-Markov theorem.

Solution. When the MLE estimator lacks linearity and/or unbiasedness, which is perfectly
possible, it falls outside the scope of the Gauss-Markov theorem. Consequently, the asymp-
totic variance of

√
n(β̃ − β∗) can be smaller than that of

√
n(β̂ − β∗) without posing any

contradictions.

(e) Find the asymptotic variance of
√
n(β̂ − β∗).

Solution. Write
√
n(β̂ − β∗) = (n−1

∑n
i=1 xix

′
i)
−1√

n (n−1
∑n

i=1 xiui) . By standard LLN,

CMT, CLT, and Slutsky arguments it follows that
√
n(β̂ − β∗)

d−→ N(0,E[xix
′
i]
−1σ2).

(f) Show algebraically that (i) the asymptotic variance of
√
n(β̃ − β∗) is no larger than the

asymptotic variance of
√
n(β̂− β∗); and (ii) give a necessary and sufficient condition on the

density f(u) for the asymptotic variance of β̂ and β̃ to be the same.

Solution. Under standard regularity conditions, taking logs of the likelihood function ob-
tained in (a), using first-order conditions and appealing to the mean value theorem, one

can show just as in Exercise 1 that
√
n(β̃ − β0)

d−→ N(0, J−1), where J = E
[(

f ′(ui)
f(ui)

)2
xix

′
i

]
.

Recall that A−B is PSD if and only if B−1 − A−1 is PSD. Therefore(
1

σ2
E [xix

′
i]

)−1

−

(
E

[(
f ′(ui)

f(ui)

)2

xix
′
i

])−1

≿ 0

⇐⇒ E

[(
f ′(ui)

f(ui)

)2

xix
′
i

]
− 1

σ2
E [xix

′
i] ≿ 0

(LIE) ⇐⇒ E

[
E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
xix

′
i

]
− E

[
1

σ2
xix

′
i

]
≿ 0. (1)

From Cauchy-Schwartz inequality,

E[u2|xi]︸ ︷︷ ︸
=σ2

E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
≥

E

[
u
f ′(ui)

f(ui)

∣∣∣∣∣xi

]
︸ ︷︷ ︸

=−1


2

= 1, 1

whence

E

[(
f ′(ui)

f(ui)

)2
∣∣∣∣∣xi

]
≥ 1

σ2
.

1Observe that E

[
ui

f ′(ui)
f(ui)

∣∣∣∣∣xi

]
=
∫∞
−∞ ui

f ′(ui)
f(ui)

f(ui) dui =
∫∞
−∞ uif

′(ui)dui = uif(ui)
∣∣∣∞
−∞

−
∫∞
−∞ f(ui) dui,

by integration by parts. Since f is a pdf, the second term equals 1. You can show that the first term is zero.
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Therefore (1) holds and hence

Avar(β̂)− Avar(β̃) ≿ 0.

A necessary and sufficient condition on the density f(ui) for the asymptotic variance of

β̂ and β̃ to be the same is E

[(
f ′(ui)
f(ui)

)2 ∣∣∣∣∣xi

]
= 1/σ2. A simple sufficient condition is ui

being normally distributed. Observe that in this case we would have f ′(ui)/f(ui) = −ui/σ
2,

whence E

[(
f ′(ui)
f(ui)

)2 ∣∣∣∣∣xi

]
= 1/σ2.

7. [16.34, LNs] Consider the following regression model with the explanatory variable being
a time trend:

yi = iβ + ui, i = 1, . . . , N,

where the ui are i.i.d. with E[ui] = 0, V [ui] = σ2, and E|ui|3 = C.

(a) Show that

β̂N =

∑N
i=1 iyi∑N
i=1 i

2

is an unbiased estimator of β.

Solution. Observe that

β̂N =

∑N
i=1 i(iβ + ui)∑N

i=1 i
2

= β +

∑N
i=1 iui∑N
i=1 i

2
,

whence

E[β̂N ] = E[β] + E

[∑N
i=1 iui∑N
i=1 i

2

]
= β +

∑N
i=1 iE[ui]∑N

i=1 i
2

= β.

(b) Show that

V [β̂N ] =
6σ2

N(N + 1)(2N + 1)
.

Hint: it may be helpful to know that
∑N

i=1 i
2 = 1

6
N(N + 1)(2N + 1).

Solution.

V [β̂N ] = V

[
β +

∑N
i=1 iui∑N
i=1 i

2

]
= V

[∑N
i=1 iui∑N
i=1 i

2

]
=

∑N
i=1 i

2V [ui](∑N
i=1 i

2
)2

=

∑N
i=1 i

2(∑N
i=1 i

2
)2V [ui] =

1∑N
i=1 i

2
σ2 =

6σ2

N(N + 1)(2N + 1)
.
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(c) Prove that N1/2(β̂N −β)
p−→ 0 using Chebyshev’s inequality, and comment how this result

differs from what we have seen in class.

Solution. By Chebyshev’s inequality

0 ≥ P (|
√
N(β̂N − β)| ≥ ε) ≥ NV [β̂N ]

ε2
=

1

ε2
6σ2

(N + 1)(2N + 1)
→ 0.

Therefore
√
N(β̂N − β)

p−→ 0.

(d) Find r∗ such that N r∗(β̂N −β) converges in distribution to a nondegenerate distribution.

Solution. Write

N r∗(β̂N − β) = N r∗
∑N

i=1 iui∑N
j=1 j

2
=

√
N

N−1

N∑
i=1

iui∑N
j=1 j

2
N r∗+1/2

︸ ︷︷ ︸
≡Xni

 .

Observe that E[Xni] = 0. In order for Lindeberg-Feller CLT to be applied, the first condition
we need to verify is the Lyapunov condition. For this, it suffices to show that for some δ > 0
we have

lim
N→∞

1

σ̄2+δ
n

N∑
i=1

E|Xni|2+δ = 0,

where σ̄2
n =

∑N
i=1 V [Xni]. Take δ = 1 and observe that

N∑
i=1

E|Xni|3 =
N∑
i=1

E

 i3|u3
i |(∑N

j=1 j
2
)3N3r∗+3/2


=

N∑
i=1

i3(∑N
j=1 j

2
)3N3r∗+3/2E|u3

i |

=

(∑N
i=1 i

3
)
N3r∗+3/2(∑N

i=1 i
2
)3 C.

Recall that
∑N

i i2 has degree 3 in N , so the denominator has degree 27 in N . One can show

that
∑N

i=1 i
3 = N2(N+1)

4
, so the numerator has degree 4 + (3r∗ + 3/2) in N . Thus, provided

r∗ ≤ 7.1666 . . . , the above limit is zero. Now, it rests to verify that σ̄2+δ
n = σ̄3

n does not
converge to zero, which is equivalent to σ̄2

n not converging to zero. We have

σ̄2
n =

N∑
i=1

6σ2N2r∗

(N + 1)(2N + 1)
=

6σ2N2r∗+1

(N + 1)(2N + 1)
.

https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes
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For this to not converge to zero we must have 2r∗ + 1 ≥ 2, and so r∗ ≥ 1/2. Therefore, for
any 1/2 ≤ r∗ ≤ 7.1666 . . . the Lyapunov condition holds, and hence the Lindeberg-Feller
CLT holds. Now it rests to verify that the average variance n−1σ̄2

n of Xni converges to a
constant, say σ̄2. Observe that the variance of Xni is

V [Xni] =
6σ2

N(N + 1)(2N + 1)
N2r∗+1 =

6σ2N2r∗

(N + 1)(2N + 1)
.

Therefore we need to ensure that

N−1

N∑
i=1

V [Xni] = N−1

N∑
i=1

6σ2

(N + 1)(2N + 1)
N2r∗ =

6σ2N2r∗

(N + 1)(2N + 1)

p−→ σ̄2 < ∞.

For this to happen we need to ensure that the denominator grows at least as fast as the
numerator. That is, the maximum degree of N in the denominator must be at least as
large as the degree of N in the numerator. Therefore we need 2r∗ ≤ 2, which implies
r∗ ≤ 1. However, the question asks specifically for a nondegenerate distribution; that is, we
additionally must have σ̄2 ̸= 0. Observe that for any r∗ < 1, σ̄2 = 0. Therefore, we must
have r∗ = 1.

(e) Find the limiting distribution of N r∗(β̂N − β), for r∗ found in part (d).

Solution. For r∗ = 1 we have

σ̄2 = lim
N→∞

6σ2N2

(N + 1)(2N + 1)
= 3σ2.

It follows by the Lindeberg-Feller CLT that N r∗(β̂N − β) = N(β̂N − β)
d−→ N(0, 3σ2).

8. [9.19, Hansen] An economist estimates Y = X ′
1β1 + X2β2 + e by least squares and tests

the hypothesis H0 : β2 = 0 against H1 : β2 ̸= 0. Assume β1 ∈ Rk and β2 ∈ R. She obtains a
Wald statistic W = 0.34. The sample size is n = 500.

(a) What is the correct degrees of freedom for the χ2 distribution to evaluate the significance
of the Wald statistic?

Solution. q = 1. The dimension of β2 is 1, and the hypothesis is that β2 is zero, which is one
restriction.

(b) The Wald statistic W is very small. Indeed, is it less than the 1% quantile of the
appropriate χ2 distribution? If so, should you reject H0? Explain your reasoning.

Solution. Yes. The 1% quantile of a χ2
1 is ≈ 0.00016, which is less than W = 0.34. No.

The Wald test rejects for large values of Wn, when Wn ≥ c for some c. A test which rejects
for small Wn can have correct Type I error, but will have low power. An asymptotic α%
test rejects H0 if Wn ≥ cα where cα is the 1 − α quantile (the upper α quantile), that is
P (Wn ≥ cα) = 1 − P (Wn < cα) = α. An asymptotic 5% test rejects if Wn ≥ 3.84, and an
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asymptotic 1% test rejects for Wn ≥ 6.63. Since Wn is far smaller, H0 is not rejected. The
question about the 1% quantile is misleading. It is not the 1% critical value. It is also not
sensible to talk about test with 99% Type I error. So there is no sense in which 0.00016 is
a reasonable critical value for a test.

9. [9.20, Hansen] You are reading a paper, and it reports the results from two nested OLS
regressions:

Yi = X ′
1iβ̃1 + ẽi

Yi = X ′
1iβ̂1 +X ′

2iβ̂2 + êi.

Some summary statistics are reported. For the short regression, R2 = .20,
∑n

i=1 ẽ
2
i = 106,

the number of coefficients is 5 and n = 50. For the long regression, R2 = .26,
∑n

i=1 ê
2
i = 100,

the number of coefficients is 8 and n = 50. You are curious if the estimate β̂2 is statistically
different from the zero vector. Is there a way to determine an answer from this information?
Do you have to make any assumptions (beyond the standard regularity conditions) to justify
your answer?

Solution. The question asks if the estimate is statistically different than zero. This is asking
for a statistical test.2 The specified null hypothesis is that β2 = 0. The general Wald statistic
would be appropriate, but cannot be calculated from the information. However, the Wald
statistic assuming homoskedasticity can be calculated. Thus the key assumption required is
that the error is conditionally homoskedastic: E[e2i |xi] = σ2, a constant. The Wald statistic
for (1) versus (2) assuming homoskedasticity is

W = n
σ̃2 − σ̂2

σ̂2

= n

(∑n
i=1 ẽi −

∑n
i=1 ê

2
i∑n

i=1 ê
2
i

)
n− k

k2

= 50

(
106− 100

100

)
= 3,

where k2 is the dimension of x2i, which is 3 since (2) has 3 more coefficients than (1). A 5%
asymptotic Wald test compares this with the 5% critical value of the χ2

3 distribution, which
is about 7.8. Since 3 is less than 7.8, you don’t reject. While you may have memorized
this, the mean of χ2

3 is 3, so the observed value of 3 is certainly less than the 5% quantile.
Alternatively, the 5% critical value of the χ2

1 is 1.96
2 = 3.86, which must be smaller than the

critical value of the χ2
3 distribution, so it is easy to conclude that the observed value of 3 is

smaller than the critical value.

2In contrast, model selection asks which model fits better.
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As an alternative to the Wald statistic, you could compute the F statistic, and reject the
hypothesis if the F statistic exceeds the 5% critical value from the F distribution with
degrees of freedom — 3,42. This is appropriate if you add the additional assumption that
the error is independent of the regressors and Gaussian.

11. [23.4, Hansen] Take the model Y = β1 exp(β2X) + e with E[e | X] = 0.

(a) Are the parameters (β1, β2) identified?

Solution. No. Assume the model is correctly specified, so there exists a parameter value
β∗ = (β∗

1 , β
∗
2) satisfying E[Y |X = x] = β∗

1 exp(β
∗
2X). The parameters (β1, β2) are point

identified if there is a unique (β1, β2) such that β1 exp(β2X) = β∗
1 exp(β

∗
2X). In other words,

if β1 exp(β2X) ̸= β∗
1 exp(β

∗
2X) whenever (β1, β2) ̸= (β∗

1 , β
∗
2). Fix β1 = β∗

1 = 0. For any
β2, β

∗
2 ∈ R we have β1 exp(β2X) = β∗

1 exp(β
∗
2X) = 0. Therefore the parameters (β1, β2) are

not identified in general.

(b) Find an expression to calculate the covariance matrix of the NLLS estimators (β̂1, β̂2).

Solution. We know that the asymptotic covariance matrix of NLLS estimators is given by

Avar[β̂] = Q−1ΩQ−1

= E[mβim
′
βi]

−1E[mβim
′
βie

2
i ]E[mβim

′
βi]

−1,

where mβi ≡ ∂m(xi, β
∗)/∂β. For m(x, β) = β1 exp(β2x) we have

mβi =

[
exp(β∗

2xi)
β∗
1 exp(β

∗
2xi)xi

]
.

The estimate m̂βi is obtained by replacing (β1, β2) with the NLLS estimator (β̂1, β̂2). The
covariance matrix components are then estimated as

Q̂ =
1

n

n∑
i=1

m̂θim̂
′
θi,

and Ω̂ =
1

n

n∑
i=1

m̂θim̂
′
θiê

2
i ,

where êi = Yi −m(Xi, θ̂) are the NLLS residuals. Thus,

ˆAvar[β̂] = Q̂−1Ω̂Q̂−1

=

[
1

n

n∑
i=1

m̂θim̂
′
θi

]−1(
1

n

n∑
i=1

m̂θim̂
′
θiê

2
i

)[
1

n

n∑
i=1

m̂θim̂
′
θi

]−1

.
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12. [25.10, Hansen] Find the first-order condition for the probit MLE β̂probit.

Solution. Let (Y,X) be random with Y ∈ {0, 1} and X ∈ Rk. The Probit model is

P [Y = 1|X = x] = Φ(x′β),

where Φ(u) is the standard normal distribution function. To construct the likelihood we
need the distribution of an individual observation. Recall that if Y is Bernoulli, such that
P [Y = 1] = p and P [Y = 0] = 1− p, then Y has the probability mass function

π(y) = py(1− p)1−y, y ∈ {0, 1}.

In the Probit model, Y is conditionally Bernoulli, so its conditional probability mass function
is

π(Y |X) = Φ(X ′β)Y [1− Φ(X ′β)]1−Y = Φ(X ′β)YΦ(−X ′β)1−Y = Φ(Z ′β),

where Z = X if Y = 1 and Z = −X if Y = 0. Taking logs and summing across observations
we obtain the log-likelihood function:

Ln(β) =
n∑

i=1

log Φ(Z ′
iβ).

The likelihood score is

Sn(β) =
∂

∂β
Ln(β) =

n∑
i=1

Zi
ϕ(Z ′

iβ)

Φ(Z ′
iβ)

=
n∑

i=1

Ziλ(Z
′
iβ),

where λ(Z ′
iβ) ≡ ϕ(Z ′

iβ)/Φ(Z
′
iβ) is known as the inverse Mills ratio. Therefore the first-order

conditions are
n∑

i=1

Ziλ(Z
′
iβ) = 0.
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13. [17.2, LNs] Consider the model

yi = I(x′
iβ

∗ + ui > 0),

where β∗ is the true parameter and (x′
i, ui) are iid with ui|xi having a N(0, 1) distribution

with cdf Φ.

(a) Find E[yi|xi; β], the conditional expectation of yi given xi.

Solution. The event yi = 1 is the same as x′
iβ

∗ + ui > 0. Thus

P [yi = 1 | xi] = P [x′
iβ

∗ + ui > 0 | xi] = P [ui > −x′
iβ

∗ | xi]

= 1− P [ui < −x′
iβ

∗ | xi] = 1− Φ(−x′
iβ

∗) = Φ(x′
iβ

∗).

Therefore
E[yi|xi; β] = Φ(x′

iβ
∗) · 1 + [1− Φ(x′

iβ
∗)] · 0 = Φ(x′

iβ
∗).

(b) Find V [yi | xi; β], the conditional variance of yi given xi. Hint: yi is a Bernoulli random
variable.

Solution. Observe that the event y2i = 1 is also the same as x′
iβ

∗ + ui > 0. Therefore just as
in (a) we have E[y2i |xi; β] = Φ(x′

iβ
∗). It follows that

V [yi|xi; β] = E[y2i |xi; β]− E[yi|xi; β]
2

= Φ(x′
iβ

∗)− Φ(x′
iβ

∗)2

= Φ(x′
iβ

∗)[1− Φ(x′
iβ

∗)].

(c) Consider the estimator β̂ which minimizes

n∑
i=1

(yi − E[yi|xi, β])
2.

Find the limiting distribution of
√
n(β̂ − β∗).

Solution. Notice that since E[yi|xi, β] = Φ(x′
iβ), β̂ can be understood as a nonlinear least

squares estimator with m(xi, β) = Φ(x′
iβ) for a Probit model yi = Φ(x′

iβ) + ei. Therefore

Avar[β̂] = Q−1ΩQ−1

= E[mβim
′
βi]

−1E[mβim
′
βie

2
i ]E[mβim

′
βi]

−1,

where mβi ≡ ∂m(xi, β
∗)/∂β. For m(xi, β) = Φ(x′

iβ) we have

mβi = xiϕ(x
′
iβ

∗).
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Thus, by observing that V [yi|xi; β] = V [ei|xi; β] = Φ(x′
iβ

∗)[1− Φ(x′
iβ

∗)],

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2e2ixix

′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

(LIE) = N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]xix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

= N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2Φ(x′

iβ
∗)[1− Φ(x′

iβ
∗)]xix

′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

(d) Consider the estimator β̃ which minimizes

n∑
i=1

(yi − E[yi|xi, β])
2

V [yi|xi; β∗]
.

Find the limiting distribution of
√
n(β̃ − β∗).

Solution. Observe that

n∑
i=1

(yi − E[yi|xi, β])
2

V [yi|xi; β∗]
=

n∑
i=1

(
yi

V [yi|xi; β∗]1/2
− E[yi|xi, β]

V [yi|xi; β∗]1/2

)2

.

In a similar fashion to what was done in item (c), β̃ can be understood as a nonlinear least
squares estimator for a rescaled (by V [yi|xi; β

∗]1/2) Probit model

yi
V [yi|xi; β∗]1/2

=
Φ(x′

iβ)

V [yi|xi; β∗]1/2
+ εi.

.
This is equivalent to

yi = Φ(x′
iβ) + V [yi|xi; β

∗]1/2εi.

Thus from (c) we have the relation ei = V [yi|xi; β
∗]1/2εi, whence it follows that

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]ε2ixix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

But notice that V [εi] = V [ei]/V [yi|xi; β
∗] = V [yi|xi; β

∗]/V [yi|xi; β
∗] = 1. Therefore by LIE

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]xix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

= N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2Φ(x′

iβ
∗)[1− Φ(x′

iβ
∗)]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

This is exactly the same asymptotic distribution obtained in item (c).

(e) Compare the asymptotic variance of β̂ and β̃. Explain your answer.

Solution. The asymptotic variances of β̂ and β̃ are exactly the same. Division by V [yi|xi; β
∗]

just provides a useful normalization that makes the error variance unitary.


