
Statistics II Problem Set 4
Professor: Marcelo J. Moreira Solutions
TA: Luan Borelli September 09, 2024

1. The OLS estimator β̂n minimizes (y − Xβ)′(y − Xβ). Now, consider the constrained
estimator β̃n which minimizes (y −Xβ)′(y −Xβ) subject to R′β = c.

(a) Show that

β̃n = β̂n − (X ′X)−1R
(
R′(X ′X)−1R

)−1
(
R′β̂n − c

)
.

Solution. The constrained least squares estimator is

β̃n = arg min
R′β=c

(y −Xβ)′(y −Xβ)

= arg min
R′β=c

(y′y − 2y′Xβ + β′X ′Xβ) .

This problem is equivalent to finding the critical points of the Lagrangian

L(β, λ) = 1

2
(y′y − 2y′Xβ + β′X ′Xβ) + λ′(R′β − c)

over (β, λ) where λ is a vector of Lagrangian multipliers. The solution is a saddle point. The
Lagrangian is minimized over β while maximized over λ. The first-order conditions for the
solution are

∂

∂β
L(β̃n, λ̃) = −X ′y +X ′Xβ̃n +Rλ̃ = 0,

and
∂

∂λ
L(β̃n, λ̃) = R′β̃n − c = 0.

Premultiplying the former by R′(X ′X)−1 we obtain

−R′β̂n +R′β̃n +R′(X ′X)−1Rλ̃ = 0.

Imposing R′β̃n − c = 0 and solving for λ̃ we find

λ̃n =
[
R′(X ′X)−1R

]−1
(R′β̂n − c).

Substituting this expression into the first first-order condition we obtain

β̃n = β̂n − (X ′X)−1R
[
R′(X ′X)−1R

]−1
(R′β̂n − c),

as desired.

(b) When errors are homoskedastic, show that

V
(
β̂n|X

)
− V

(
β̃n|X

)
= σ2(X ′X)−1R

(
R′(X ′X)−1R

)−1
R′(X ′X)−1 ≥ 0.
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Solution. When errors are (conditionally) homoskedastic, we have E[uu′|X] = Inσ
2. Write

β̂n = β + (X ′X)−1X ′u. Then

V
(
β̂n|X

)
= V

(
(X ′X)−1X ′u|X

)
= E[(X ′X)−1X ′uu′X(X ′X)−1|X]

= (X ′X)−1X ′E[uu′|X]X(X ′X)−1 = (X ′X)−1σ2.

Further, observe that

β̃n = β̂n − (X ′X)−1R
[
R′(X ′X)−1R

]−1
(R′β̂n − c)

= β̂n − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′β̂n + (X ′X)−1R

[
R′(X ′X)−1R

]−1
c

= [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′]β̂n + (X ′X)−1R

[
R′(X ′X)−1R

]−1
c

= [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′](β + (X ′X)−1X ′u) + (X ′X)−1R

[
R′(X ′X)−1R

]−1
c

= [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′]β︸ ︷︷ ︸

Conditionally nonstochastic

+ [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′](X ′X)−1X ′u

+ (X ′X)−1R
[
R′(X ′X)−1R

]−1
c︸ ︷︷ ︸

Conditionally nonstochastic

.

Note that, conditional on X, the only stochastic component is the second term. As a result,
the remaining terms can be disregarded when computing the conditional variance. Therefore,

V
(
β̃n|X

)
= V

(
[In − (X ′X)−1R

[
R′(X ′X)−1R

]−1
R′](X ′X)−1X ′u

)
= E[[In − (X ′X)−1R

[
R′(X ′X)−1R

]−1
R′](X ′X)−1X ′uu′X(X ′X)−1

× [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′]′|X]

= [In− (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′](X ′X)−1X ′E[uu′|X]X(X ′X)−1

× [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′]′

= [In − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′](X ′X)−1[In − (X ′X)−1R

[
R′(X ′X)−1R

]−1
R′]′σ2

= [(X ′X)−1 − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′(X ′X)−1][In −R

[
R′(X ′X)−1R

]−1
R′(X ′X)−1]σ2

= (X ′X)−1σ2 − (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′(X ′X)−1σ2

− (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′(X ′X)−1σ2

+ (X ′X)−1R
[
R′(X ′X)−1R

]−1
R′(X ′X)−1R

[
R′(X ′X)−1R

]−1︸ ︷︷ ︸
Identity

R′(X ′X)−1σ2

= (X ′X)−1σ2︸ ︷︷ ︸
V (β̂|X)

−(X ′X)−1R
[
R′(X ′X)−1R

]−1
R′(X ′X)−1σ2.

Therefore,

V
(
β̂n|X

)
− V

(
β̃n|X

)
= σ2(X ′X)−1R

(
R′(X ′X)−1R

)−1
R′(X ′X)−1,
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as desired. To verify that this matrix is positive semidefinite, simply note that

σ2(X ′X)−1R
(
R′(X ′X)−1R

)−1
R′(X ′X)−1

= σ2(X ′X)−1/2(X ′X)−1/2R
(
R′(X ′X)−1/2(X ′X)−1/2R

)−1
R′(X ′X)−1/2(X ′X)−1/2

= σ2(X ′X)−1/2′N(X′X)−1/2R(X
′X)−1/2,

where
N(X′X)−1/2R ≡ R

(
R′(X ′X)−1/2(X ′X)−1/2R

)−1
R′(X ′X)−1/2

is the projection matrix of (X ′X)−1/2R. Since V
(
β̂n|X

)
− V

(
β̃n|X

)
is a sandwich form in

a positive semidefinite matrix,1 it must be positive semidefinite.

2. Suppose that
yi = β1 + exp(xiβ2) + ui,

where (xi, ui) are iid with E[ui|xi] = 0 and V [ui|xi] = σ2. We find the estimator β̂n for
β = (β1, β2) by minimizing

Qn(β) ≡
n∑

i=1

(yi − β1 − exp(xiβ2))
2.

Find the asymptotic distribution of
√
n(β̂n − β).

Solution. To simplify notation, let h(xi, β) ≡ β1 + exp(xiβ2). The first-order conditions are

∇βQn(β) = −2
n∑

i=1

∇βh(xi, β)[yi − h(xi, β)]

= −2
n∑

i=1

[
1

exp(xiβ2)xi

]
[yi − β1 − exp(xiβ2)] = 0.

A first-order Taylor expansion of ∇βQn(β) around the true parameter value β∗ ≡ (β∗
1 , β

∗
2)

gives us

0 = ∇βQn(β̂) ≈ ∇βQn(β
∗) +∇ββ′Qn(β

∗)(β̂ − β∗), (1)

where the Hessian matrix ∇ββ′Qn(β
∗) is given by

∇ββ′Qn(β
∗) = −2

n∑
i=1

∇ββ′h(xi, β)[yi − h(xi, β)] + 2
n∑

i=1

∇βh(xi, β)∇βh(xi, β)
′

= −2
n∑

i=1

[
0 0
0 exp(xiβ2)x

2
i

]
[yi − h(xi, β)] + 2

n∑
i=1

[
1 exp(xiβ2)xi

exp(xiβ2)xi exp(xiβ2)
2x2

i

]
.

1Recall that every projection matrix is positive semidefinite.
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We can multiply (1) by
√
n and isolate

√
n(β̂ − β∗) to obtain

√
n(β̂ − β∗) ≈ − [∇ββ′Qn(β

∗)]−1√n∇βQn(β
∗)

= −
[
1

n
∇ββ′Qn(β

∗)

]−1√
n

[
1

n
∇βQn(β

∗)− E[∇βQn(β
∗)]

]
,

where the last equality follows from multiplying and dividing the expression by n and using
the fact that E[∇βQn(β

∗)] = 0. This holds because ∇βQn(β
∗) = −2

∑n
i=1∇βh(xi, β)ui and

E[ui] = 0.

Now, by the law of large numbers and the continuous mapping theorem, we have that[
1

n
∇ββ′Qn(β

∗)

]−1
p−→ E [−2∇ββ′h(xi, β)[yi − h(xi, β)] + 2∇βh(xi, β)∇βh(xi, β)

′]
−1

=

−2∇ββ′h(xi, β)E [ui]︸ ︷︷ ︸
=0

+2E [∇βh(xi, β)∇βh(xi, β)
′]

−1

=
1

2
E [∇βh(xi, β)∇βh(xi, β)

′]
−1

(2)

=
1

2

[
1 E[exp(xiβ2)xi]

E[exp(xiβ2)xi] E[exp(xiβ2)
2x2

i ]

]−1

. (3)

Furthermore, by the central limit theorem,

√
n

[
1

n
∇βQn(β

∗)− E[∇βQn(β
∗)]

]
d−→ Z ∼ N

(
0, 4E

[
u2
i∇βh(xi, β)∇βh(xi, β)

′]) (4)

(LIE) = N
(
0, 4E

[
σ2∇βh(xi, β)∇βh(xi, β)

′])
= N

(
0, 4σ2

[
1 E[exp(xiβ2)xi]

E[exp(xiβ2)xi] E[exp(xiβ2)
2x2

i ]

])
. (5)

Therefore, from (2) and (4), by Slutsky’s theorem,

√
n(β̂ − β∗)

d−→ 1

2
E [∇βh(xi, β)∇βh(xi, β)

′]
−1

Z

= N(0,E [∇βh(xi, β)∇βh(xi, β)
′]
−1 E

[
u2
i∇βh(xi, β)∇βh(xi, β)

′]E [∇βh(xi, β)∇βh(xi, β)
′]
−1
).

(6)

Or, more specifically, using (3) and (5),

N

(
0, σ2

[
1 E[exp(xiβ2)xi]

E[exp(xiβ2)xi] E[exp(xiβ2)
2x2

i ]

]−1

×
[

1 E[exp(xiβ2)xi]
E[exp(xiβ2)xi] E[exp(xiβ2)

2x2
i ]

] [
1 E[exp(xiβ2)xi]

E[exp(xiβ2)xi] E[exp(xiβ2)
2x2

i ]

]−1
)
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= N

(
0, σ2

[
1 E[exp(xiβ2)xi]

E[exp(xiβ2)xi] E[exp(xiβ2)
2x2

i ]

]−1
)

= N

(
0,

σ2

E[exp(xiβ2)2x2
i ]− E[exp(xiβ2)xi]2

[
E[exp(xiβ2)

2x2
i ] −E[exp(xiβ2)xi]

−E[exp(xiβ2)xi] 1

]−1
)
.

Notice that the asymptotic distribution obtained in (6) is quite general for nonlinear least
squares estimators, holding for any nonlinear function h satisfying standard regularity condi-
tions. The above expression is simply a specialization for the case h(xi, β) = β1 + exp(xiβ2)
under homoskedastic errors.

3. [17.2, LNs] Consider the model

yi = I(x′
iβ

∗ + ui > 0),

where β∗ is the true parameter and (x′
i, ui) are iid with ui|xi having a N(0, 1) distribution

with cdf Φ.

(a) Find E[yi|xi; β], the conditional expectation of yi given xi.

Solution. The event yi = 1 is the same as x′
iβ

∗ + ui > 0. Thus

P [yi = 1 | xi] = P [x′
iβ

∗ + ui > 0 | xi] = P [ui > −x′
iβ

∗ | xi]

= 1− P [ui < −x′
iβ

∗ | xi] = 1− Φ(−x′
iβ

∗) = Φ(x′
iβ

∗).

Therefore
E[yi|xi; β] = Φ(x′

iβ
∗) · 1 + [1− Φ(x′

iβ
∗)] · 0 = Φ(x′

iβ
∗).

(b) Find V [yi | xi; β], the conditional variance of yi given xi. Hint: yi is a Bernoulli random
variable.

Solution. Observe that the event y2i = 1 is also the same as x′
iβ

∗ + ui > 0. Therefore just as
in (a) we have E[y2i |xi; β] = Φ(x′

iβ
∗). It follows that

V [yi|xi; β] = E[y2i |xi; β]− E[yi|xi; β]
2

= Φ(x′
iβ

∗)− Φ(x′
iβ

∗)2

= Φ(x′
iβ

∗)[1− Φ(x′
iβ

∗)].

(c) Consider the estimator β̂ which minimizes

n∑
i=1

(yi − E[yi|xi, β])
2.

Find the limiting distribution of
√
n(β̂ − β∗).
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Solution. Notice that since E[yi|xi, β] = Φ(x′
iβ), β̂ can be understood as a nonlinear least

squares estimator with h(xi, β) = Φ(x′
iβ) for a Probit model yi = Φ(x′

iβ) + ei. Therefore,
applying the results from Exercise 2 for the asymptotic distribution of nonlinear least squares
estimators,

Avar[β̂] = E[hβih
′
βi]

−1E[hβih
′
βie

2
i ]E[hβih

′
βi]

−1,

where hβi ≡ ∂h(xi, β
∗)/∂β. For h(xi, β) = Φ(x′

iβ) we have

hβi = xiϕ(x
′
iβ

∗).

Thus, by observing that V [yi|xi; β] = V [ei|xi; β] = Φ(x′
iβ

∗)[1− Φ(x′
iβ

∗)],

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2e2ixix

′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

(LIE) = N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]xix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

= N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2Φ(x′

iβ
∗)[1− Φ(x′

iβ
∗)]xix

′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

(d) Consider the estimator β̃ which minimizes

n∑
i=1

(yi − E[yi|xi, β])
2

V [yi|xi; β∗]
.

Find the limiting distribution of
√
n(β̃ − β∗).

Solution. Observe that

n∑
i=1

(yi − E[yi|xi, β])
2

V [yi|xi; β∗]
=

n∑
i=1

(
yi

V [yi|xi; β∗]1/2
− E[yi|xi, β]

V [yi|xi; β∗]1/2

)2

.

In a similar fashion to what was done in item (c), β̃ can be understood as a nonlinear least
squares estimator for a rescaled (by V [yi|xi; β

∗]1/2) Probit model

yi
V [yi|xi; β∗]1/2

=
Φ(x′

iβ)

V [yi|xi; β∗]1/2
+ εi.

This is equivalent to
yi = Φ(x′

iβ) + V [yi|xi; β
∗]1/2εi.

Thus from (c) we have the relation ei = V [yi|xi; β
∗]1/2εi, whence it follows that

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]ε2ixix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

But notice that V [εi] = V [ei]/V [yi|xi; β
∗] = V [yi|xi; β

∗]/V [yi|xi; β
∗] = 1. Therefore by LIE

√
n(β̂ − β∗)

d−→ N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2V [yi|xi; β

∗]xix
′
i]E[ϕ(x′

iβ
∗)2xix

′
i]
−1)

= N(0,E[ϕ(x′
iβ

∗)2xix
′
i]
−1E[ϕ(x′

iβ
∗)2Φ(x′

iβ
∗)[1− Φ(x′

iβ
∗)]E[ϕ(x′

iβ
∗)2xix

′
i]
−1).

This is exactly the same asymptotic distribution obtained in item (c).
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(e) Compare the asymptotic variance of β̂ and β̃. Explain your answer.

Solution. The asymptotic variances of β̂ and β̃ are exactly the same. Division by V [yi|xi; β
∗]

just provides a useful normalization that makes the error variance unitary.

4. [17.3, LNs] Suppose that the logistic, rather than probit, model applies. So E[y|X] =

G(x′θ), with G(a) = exp(a)
1+exp(a)

. Show that the ZES-rule estimator c satisfies X ′u = 0, where

u = {ui} with ui = yi −G(x′
ic).

Solution. In a logistic model, yi is a binary random variable that takes the value 1 or 0.
Therefore, its distribution follows a Bernoulli distribution with the conditional probability
mass function being

f(yi|xi) = G(x′
iθ)

y[1−G(x′
iθ)]

1−y.

Thus
ln f(yi|xi) = y lnG(x′

iθ) + (1− y) ln (1−G(x′
iθ)) .

The score is then given by

∂

∂θ
ln f(yi|xi) = y

G′(x′
iθ)

G(x′
iθ)

− (1− y)
G′(x′

iθ)

1−G(x′
iθ)

=
G′(x′

iθ) [yi −G(x′
iθ)]

G(x′
iθ) [1−G(x′

iθ)]
.

But notice that

G′(x′
iθ) =

exp(x′
iθ)xi

[1 + exp(x′
iθ)]

2
and G(x′

iθ) [1−G(x′
iθ)] =

exp(x′
iθ)

[1 + exp(x′
iθ)]

2
.

Thus
G′(x′

iθ)

G(x′
iθ)[1−G(x′

iθ)]
= xi,

whence
∂

∂θ
ln f(yi|xi) = xi[yi −G(x′

iθ)].

The ZES-rule estimator c is obtained by setting the sample analog of

E[xi[yi −G(x′
ic)]] = E[xiui]

to zero and solving for c. That is, the ZES-rule estimator solves

n−1

n∑
i=1

xiui = 0,

or, equivalently, by letting X ≡ (x1, x2, . . . , xn)
′ and u ≡ (u1, u2, . . . , un),

X ′u = 0.
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5. [18.1, LNs] This question is about the GMM estimator. Define

Qn(θ) =
1

n

n∑
i=1

g(Xi, θ)
′An

1

n

n∑
i=1

g(Xi, θ)/2,

where An
p−→ A and θ ∈ R.

(a) Rewrite the proof done in class that the GMM estimator is asymptotically normal for the
case θ ∈ Rk: √

n(θ̂n − θ)
d−→ N

(
0, (Γ′

0AΓ0)
−1Γ′

0AV0AΓ0(Γ
′
0AΓ0)

−1
)
,

where Γ0 ≡ E
[

∂
∂θ
g(Xi, θ)

]
and V0 ≡ E [g(Xi, θ)g(Xi, θ)

′].

Solution. Being an interior solution to the problem of maximizing Qn(θ), θ̂ satisfies the first
order conditions

−

(
n−1

n∑
i=1

∇θg(Xi, θ̂)

)′

An

(
n−1

n∑
i=1

g(Xi, θ̂)

)
= 0. (7)

Assuming g is C1, a first-order Taylor series expansion of n−1
∑n

i=1 g(Xi, θ̂) gives us

n−1

n∑
i=1

g(Xi, θ̂) ≈ n−1

n∑
i=1

g(Xi, θ0) +

(
n−1

n∑
i=1

∇θg(Xi, θ0)

)
(θ̂ − θ0),

so that, plugging back this expression into the first-order conditions,

−

(
n−1

n∑
i=1

∇θg(Xi, θ̂)

)′

An

(
n−1

n∑
i=1

g(Xi, θ0)

)

−

(
n−1

n∑
i=1

∇θg(Xi, θ̂)

)′

An

(
n−1

n∑
i=1

∇θg(Xi, θ0)

)
(θ̂ − θ0) ≈ 0.

Multiplying the above expression by
√
n and solving for

√
n(θ̂ − θ0) we obtain

√
n(θ̂ − θ0) ≈ −

[(
n−1

n∑
i=1

∇θg(Xi, θ̂)

)′

An

(
n−1

n∑
i=1

∇θg(Xi, θ0)

)]−1

×

(
n−1

n∑
i=1

∇θg(Xi, θ̂)

)′

An

(
1√
n

n∑
i=1

g(Xi, θ0)

)
.

By the law of large numbers we have that

n−1

n∑
i=1

∇θg(Xi, θ̂)
p−→ Γ0 and n−1

n∑
i=1

∇θg(Xi, θ0)
p−→ Γ0,
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where Γ0 ≡ E[∇θg(wt; θ0)]. Further, by the central limit theorem we have that

1√
n

n∑
i=1

g(Xi, θ0)
d−→ N(0, V0),

where V0 ≡ E[g(Xi, θ̂)g(Xi, θ̂)
′]. Finally, by hypothesis, we have that An

p−→ A, so by the
continuous mapping and Slutsky’s theorems we conclude that

√
n(θ̂ − θ0)

d−→ (Γ′
0AΓ0)

−1Γ′
0A ·N(0, V0) = N

(
0, (Γ′

0AΓ0)
−1Γ′

0AV0AΓ0(Γ
′
0AΓ0)

−1
)
,

as desired.

(b) Show that A minimizes the variance based on the limiting distribution of
√
n(θ̂n − θ) is

A = V −1
0 .

Solution. When A = V −1
0 , the asymptotic variance reduces to (Γ′

0V
−1
0 Γ0)

−1. We want to
show that for any A,

(Γ′
0AΓ0)

−1Γ′
0AV0AΓ0(Γ

′
0AΓ0)

−1 − (Γ′
0V

−1
0 Γ0)

−1 ⪰ 0,

where “⪰” denotes “is positive semidefinite”. Recall that for matrices F and G,

G− F ⪰ 0 ⇐⇒ F−1 −G−1 ⪰ 0.

Therefore, we can alternatively show that

Γ′
0V

−1
0 Γ0 − Γ′

0AΓ0(Γ
′
0AV0AΓ0)

−1Γ′
0AΓ0 ⪰ 0.

By taking the matrix square root of V −1
0 and wisely pre- and post-multiplying terms by

V
−1/2
0 and V

1/2
0 , the left-hand side of the expression above can be rewritten as

Γ′
0V

−1/2
0 V

−1/2
0 Γ0 − Γ′

0V
−1/2
0 V

1/2
0 AΓ0(Γ

′
0AV0AΓ0)

−1Γ′
0AV

1/2
0 V

−1/2
0 Γ0

= Γ′
0V

−1/2
0 [I − V

1/2
0 AΓ0(Γ

′
0AV0AΓ0)

−1Γ′
0AV

1/2
0 ]V

−1/2
0 Γ0

= (V
−1/2
0 Γ0)

′M
V

1/2
0 AΓ0

V
−1/2
0 Γ0,

where M
V

1/2
0 AΓ0

≡ I − V
1/2
0 AΓ0(Γ

′
0AV0AΓ0)

−1Γ′
0AV

1/2
0 is the annihilator matrix of V

1/2
0 AΓ0,

which is positive semidefinite.2 Thus the expression is a sandwich form in a positive semidef-
inite matrix; whence it follows that it must be positive semidefinite.3 This concludes the
proof that A = V −1

0 minimizes the asymptotic variance of
√
n(θ̂n − θ).

2Recall that annihilator matrices are always positive semidefinite.
3Not satisfied? Let H ≡ V

−1/2
0 Γ0. Then the expression becomes H ′M

V
1/2
0 AΓ0

H. Or, using the idem-

potency and symmetry of the annihilator matrix, HM
V

1/2
0 AΓ0

(HM
V

1/2
0 AΓ0

)′. Now, for any z we have

z′HM
V

1/2
0 AΓ0

(HM
V

1/2
0 AΓ0

)′z = ∥M
V

1/2
0 AΓ0

H ′z∥2 ≥ 0, proving the positive semidefiniteness.
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6. [18.2, LNs] Consider the population model y = Xβ + u, where E(u|X) = 0. Show that
the OLS estimator can be seen as a GMM estimator.

Solution. Partition X = (xi, . . . , xn)
′ and consider the Rk → Rk moment function g(xi, β) =

xi(yi − x′
iβ). This moment function yields k valid moment conditions for the k-dimensional

parameter vector β. Indeed, since yi − x′
iβ = ui, by the law of iterated expectations we have

E[g(xi, β)] = E[xi(yi − x′
iβ)] = E[xiui] = E[xiE[ui|X]] = 0.

The sample analog for the k moment conditions above is

n−1

n∑
i=1

xi(yi − x′
iβ̂) = 0.

Rearranging, (
n∑

i=1

xix
′
i

)
β̂ =

n∑
i=1

xiyi.

Isolating β̂,

β̂ =

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiyi,

or, equivalently, in matrix form,
β̂ = (X ′X)−1X ′y,

which is precisely the OLS estimator.

7. [18.4, LNs] Suppose that you have k unbiased estimators of a parameter θ:

Tj =
1

n

n∑
i=1

gj(Xi), j = 1, . . . , k,

where Xi are iid random variables. Let V be the k × k covariance matrix for
√
nT , where

T = (T1, . . . , Tk)
′. Assume that V is known and nonsingular.

(a) Find the estimator with minimum variance among the class of unbiased estimators of
the form a′T =

∑k
j=1 ajTj.

Solution. First, notice that unbiasedness of a′T implies that we must have

E[a′T ] =
k∑

j=1

ajE[Tj] =

(
k∑

j=1

aj

)
θ = θ,
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whence it follows that we must have
∑k

j=1 aj = 1. Let g(Xi) ≡ (g1(Xi), g2(Xi), . . . , gk(Xi))
′.

We want to minimize

V [a′T ] = a′V

[
n−1

n∑
i=1

g(Xi)

]
a

= a′

(
n−2

n∑
i=1

V [g(Xi)]

)
a

=
a′V [g(Xi)]a

n

subject to the unbiasedness constraint 1′a =
∑k

j=1 aj = 1, where 1 is a k-dimensional vector
of ones. That is, we want to solve the problem

min
a

a′V [g(Xi)]a

2n
s.t. 1′a = 1.

The Lagrangian for this problem is

L(a, λ) = a′V [g(Xi)]a

2n
+ λ [1− 1′a] .

The first order conditions are

n−1V [g(Xi)]â− λ1 = 0,

1− 1′â = 0.

The former condition yields â = nλV [g(Xi)]
−11, while the latter 1′â = 1. Thus,

1′â = nλ1′V [g(Xi)]
−11 = 1,

whence

λ = n−1 1

1′V [g(Xi)]−11
.

Therefore,

â =
V [g(Xi)]

−11

1′V [g(Xi)]−11
.

The estimator for θ with minimum variance among the class of unbiased estimators of the
form a′T is then

θ̂ =
1′V [g(Xi)]

−1

1′V [g(Xi)]−11
T.

(b) Show that the estimator in (a) coincides with the GMM estimator based on k moment
conditions E[gj(Xi)− θ] = 0, j = 1, . . . , k.
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Solution. The (optimal) GMM estimator based on the k moment conditions E[g(Xi)−1θ] = 0
solves the problem

min
θ

1

2

(
n−1

n∑
i=1

[g(Xi)− 1θ]

)′

V [g(Xi)− 1θ]−1

(
n−1

n∑
i=1

[g(Xi)− 1θ]

)

= min
θ

1

2

(
n−1

n∑
i=1

[g(Xi)− 1θ]

)′

V [g(Xi)]
−1

(
n−1

n∑
i=1

[g(Xi)− 1θ]

)
.

The first-order conditions for an interior solution of this problem are

0 =

(
n−1

n∑
i=1

[−1]

)′

V [g(Xi)]
−1

(
n−1

n∑
i=1

[g(Xi)− 1θ̂]

)

= −1′V [g(Xi)]
−1

(
n−1

n∑
i=1

g(Xi)− 1θ̂

)

= −n−11′V [g(Xi)]
−1

n∑
i=1

g(Xi) + 1′V [g(Xi)]
−11θ̂,

whence

1′V [g(Xi)]
−11θ̂ = 1′V [g(Xi)]

−1n−1

n∑
i=1

g(Xi) = 1′V [g(Xi)]
−1T,

and hence

θ̂ =
1′V [g(Xi)]

−1

1′V [g(Xi)]−11
T.

8. Assume that Xi are iid with marginal density g(xi, θ).

(a) Find the score based on the joint density.

Solution. Since Xi are iid, the joint density is given by

L(Xi, θ) ≡
n∏

i=1

g(xi, θ).

Taking the natural logarithm,

lnL(Xi, θ) =
n∑

i=1

ln g(xi, θ).
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The score based on the joint density is then given by

∂

∂θ
lnL(Xi, θ) =

n∑
i=1

∂

∂θ
ln g(xi, θ).

(b) Consider the GMM objective function in which you include the moment based on the
score, E[∂ ln g(xi, θ

∗)/∂θ] = 0 and additional moments E[h(xi, θ
∗)] = 0.

Solution. Define the moment function

ρ(xi, θ) ≡
[
∇θ ln g(xi, θ)

h(xi, θ)

]
,

where ∇θ ln g(xi, θ) is a k × 1 score vector and h(xi, θ) a q × 1 vector of additional moment
functions. This gives us a set of moment conditions

E[ρ(xi, θ)] =

[
E[∇θ ln g(xi, θ)]

E[h(xi, θ)]

]
= 0

that can be used to establish a GMM objective function by considering the sample analog

ρn(θ) ≡ n−1

n∑
i=1

ρ(xi, θ) =

[
n−1

∑n
i=1∇θ ln g(xi, θ)

n−1
∑n

i=1 h(xi, θ
∗)

]
and defining

Qn(θ) ≡ ρn(θ)
′Wnρn(θ),

for some consistent, positive semidefinite, weighting matrix Wn.

(c) Compare the asymptotic variance of the GMM estimator with that of the MLE estimator.

Solution. From 5(a), the asymptotic variance of the GMM estimator is given by

(Γ′
0AΓ0)

−1Γ′
0AV0AΓ0(Γ

′
0AΓ0)

−1,

where Γ0 ≡ E [∇θρ(xi, θ)] and V0 ≡ E [ρ(xi, θ)ρ(xi, θ)
′]. And, as we know, the asymptotic

variance of the MLE estimator is given by the inverse of the Fisher information matrix,

I−1 ≡ E[∇θ ln g(xi, θ)∇θ′ ln g(xi, θ)]
−1.

Observe that

V0 = E
[
∇θ ln g(xi, θ)

h(xi, θ)

] [
∇θ ln g(xi, θ)

′ h(xi, θ)
′]

=

[
E[∇θ ln g(xi, θ)∇θ′ ln g(xi, θ)] E[∇θ ln g(xi, θ)h(xi, θ)

′]
E[∇θ ln g(xi, θ)h(xi, θ)

′] E[h(xi, θ)h(xi, θ)
′]

]
=

[
I C[∇θ ln g(xi, θ), h(xi, θ)]

C[∇θ ln g(xi, θ), h(xi, θ)] V [h(xi, θ)]

]
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and that

Γ0 =

[
E[∇θθ′ ln g(xi, θ)]
E[∇θ′h(xi, θ)]

]
=

[
−I

E[∇θ′h(xi, θ)]

]
As discussed in Exercise 5(b), when the optimal weighting matrix A = V −1

0 is considered,
the asymptotic variance of the GMM estimator simplifies to (Γ′

0V
−1
0 Γ0)

−1, whence

(Γ′
0V

−1
0 Γ0)

−1

=
[
−I ′ E[∇θ′h(xi, θ)]

′] [ I C[∇θ ln g(xi, θ), h(xi, θ)]
C[∇θ ln g(xi, θ), h(xi, θ)] V [h(xi, θ)]

]−1 [ −I
E[∇θ′h(xi, θ)]

]
.

Without loss of generality, let k = q = 1. In this case θ is a scalar parameter, and hence I,
∇θ ln g(xi, θ), and h(xi, θ) scalar functions. Then we can compute the above expression by
hand to obtain

(Γ′
0V

−1
0 Γ0)

−1 =
V [h(xi, θ)]I − C[∇θ ln g(xi, θ), h(xi, θ)]

2

V [h(xi, θ)]I + 2C[∇θ ln g(xi, θ), h(xi, θ)]E[∇θh(xi, θ)] + E[∇θh(xi, θ)]2
I−1

(8)

=: FI−1.

From this expression, we can see that under the optimal weighting matrix, the asymptotic
variances of the GMM and ML estimators are related through the term F . It is evident that
when F = 1, the asymptotic variances are the same. In the next section, we will show that
a sufficient condition for this equality to hold is that the likelihood is correctly specified.

(d) What happens with item (c) if the likelihood is correctly specified?

Solution. When the likelihood is correctly specified — that is, when the data xi is indeed
generated from a distribution with marginal density g(xi, θ) — we have the identity

0 = E[h(xi, θ
∗)] =

∫
h(xi, θ

∗)g(xi, θ
∗)dxi.

Differentiating this identity, assuming differentiation under the integral is allowed, gives

0 =

∫
h(xi, θ

∗)g(xi, θ
∗)dxi

=

∫
∇θh(xi, θ

∗)g(xi, θ
∗)dxi +

∫
h(xi, θ

∗)∇θ′g(xi, θ)dxi

= E[∇θh(xi, θ
∗)] + E[h(xi, θ

∗)∇θ′ ln g(xi, θ
∗)].

Thus,

E[∇θh(xi, θ
∗)] = −E[h(xi, θ

∗)∇θ′ ln g(xi, θ
∗)] = −C[∇θ ln g(xi, θ), h(xi, θ)].
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The term F in (8) then simplifies as

F =
V [h(xi, θ)]I − C[∇θ ln g(xi, θ), h(xi, θ)]

2

V [h(xi, θ)]I + 2C[∇θ ln g(xi, θ), h(xi, θ)]E[∇θh(xi, θ)] + E[∇θh(xi, θ)]2

=
V [h(xi, θ)]I − E[∇θh(xi, θ)]

2

V [h(xi, θ)]I − 2E[∇θh(xi, θ)]2 + E[∇θh(xi, θ)]2

=
V [h(xi, θ)]I − E[∇θh(xi, θ)]

2

V [h(xi, θ)]I − E[∇θh(xi, θ)]2

= 1.

Therefore, the expression for the asymptotic variance of the GMM estimator obtained in (8)
simplifies to

(Γ′
0V

−1
0 Γ0)

−1 = I−1.

In other words, the asymptotic variances of the GMM and ML estimators become identical.
This is expected, as it is possible to show that:

1. The maximum likelihood estimator is the most efficient estimator in the entire class of
GMM estimators [see Newey and McFadden (1994), Theorem 5.1, for a proof]

2. Including additional moments in a GMM specification never hurts (i.e., never increases)
the asymptotic variance of a GMM estimator [see Hall (2005), Theorem 6.1, for a proof]

A logical consequence of these two facts is that if a correctly specified score is included
in the moment conditions, the asymptotic variance of the resulting estimator must be the
inverse of the Fisher information matrix. Since a correctly specified score contains all the
relevant information from the data, any additional moment condition is informationally
redundant.

9. Consider the moment conditions

E
[

Xi − θ
(Xi − θ)3

]
= 0.

The observations Xi are iid.

(a) Find the asymptotic variance of the GMM estimator based on the weighting matrix
Wn → W .

Solution. Let g(Xi, θ) = (Xi − θ, (Xi − θ)3)′. As derived in Exercise 5, the asymptotic
variance is

(Γ′
0WΓ0)

−1Γ′
0WV0WΓ0(Γ

′
0WΓ0)

−1,

where

Γ0 = E
[
∂

∂θ
g(Xi, θ)

]
=

[
−1

−3E[(Xi − θ)2]

]
:=

[
−1
−3µ2

]
,
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and

V0 ≡ V

[
Xi − θ

(Xi − θ)3

]
=

[
E[(Xi − θ)2] E[(Xi − θ)4]
E[(Xi − θ)4] E[(Xi − θ)6]

]
=:

[
µ2 µ4

µ4 µ6

]
.

W is some generic limiting positive semidefinite weighting matrix.

(b) Find the asymptotic variance of the efficient GMM estimator.

Solution. For the efficient GMM estimator, we must impose the optimal weighting matrix

W = V −1
0 =

1

µ2µ6 − µ2
4

[
µ6 −µ4

−µ4 µ2

]
.

As discussed in Exercise 5, in this case the GMM asymptotic variance simplifies to

(Γ′
0V

−1
0 Γ0)

−1 =

([
−1 −3µ2

] 1

µ2µ6 − µ2
4

[
µ6 −µ4

−µ4 µ2

] [
−1
−3µ2

])−1

=

(
1

µ2µ6 − µ2
4

[
−µ6 + 3µ2µ4 µ4 − 3µ2

2

] [ −1
−3µ2

])−1

=

(
µ6 − 6µ2µ4 + 9µ3

2

µ2µ6 − µ2
4

)−1

=
µ2µ6 − µ2

4

µ6 − 6µ2µ4 + 9µ3
2

.

(c) Show that the asymptotic variance of the (efficient) GMM estimator is smaller or equal
than that based only on E[Xi − θ] = 0. Explain why they are equal when Xi are normal with
mean θ.

Solution. As discussed in Exercise 8(d), more information never hurts. The elements of the
population moment condition can be viewed as pieces of information about θ. It can be shown
that for a q×1 moment function g(Xi, θ), and any partition g(Xi, θ) = (g1(Xi, θ), g2(Xi, θ))

′,
where gi(Xi, θ) is qi × 1 and q1 + q2 = q, a GMM estimator based on the full set of moment
conditions E[g(Xi, θ)] = 0 will always have an asymptotic variance that is at least as small
as that of a GMM estimator based on a subset of moment conditions, E[g1(Xi, θ)] = 0.
In particular, consider the efficient GMM estimator based solely on the moment condition
E[Xi − θ] = 0. For this case, we have Γ0 = −1 and V0 = E[(Xi − θ)2] =: µ2. Thus, the
asymptotic variance simplifies to µ2. This result implies that we must have

µ2µ6 − µ2
4

µ6 − 6µ2µ4 + 9µ3
2

≤ µ2.

Indeed, rearranging we obtain

9µ4
2 − 6µ2

2µ4 + µ2
4 = (3µ2 − µ4)2 ≥ 0.

The fact that more correct information never hurts does not imply, however, that it always
helps. When additional moment conditions are redundant, there is no efficiency gain from
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adding them to the original set of moment conditions. To illustrate this, consider the case
where Xi ∼ N(θ, σ2). In this case, we have that

µ2 = σ2

µ4 = 3σ4

µ6 = 15σ6.

Thus
µ2µ6 − µ2

4

µ6 − 6µ2µ4 + 9µ3
2

=
15σ8 − 9σ8

15σ6 − 18σ6 + 9σ6
=

6σ8

6σ6
= σ2 = µ2.

Therefore, when Xi is normally distributed, adding the third central moment to the moment
conditions does not provide any efficiency gain. This is a latent implication of the symmetry
of the normal distribution: symmetry implies that all odd central moments contain the same
amount of information about the distribution. Thus, the third central moment is redundant
relative to the first central moment.

10. Consider the moment conditions

E[g(Xi, θ)] = 0 ⇐⇒ θ = θ0.

The observations Xi are iid and the variance of g(Xi, θ) is the matrix V (θ). Let θ̃n be a
preliminary consistent estimator of θ0. Assume W (θ) = V (θ)−1 is a differentiable function
in a neighborhood of θ0.

(a) Show that

Wn(θ) =

(
n−1

n∑
i=1

g(Xi, θ)g(Xi, θ)
′

)−1

p−→ V (θ)−1.

Solution. By the Law of Large Numbers,

n∑
i=1

g(Xi, θ)g(Xi, θ)
′ p−→ E[g(Xi, θ)g(Xi, θ)

′] =: V (θ).

Thus, by the Continuous Mapping Theorem,(
n∑

i=1

g(Xi, θ)g(Xi, θ)
′

)−1

p−→ V (θ)−1.

(b) Argue that Wn(θ̃n) converges in probability to V (θ0)
−1.

Solution. Consistency of θ̃n implies θ̃n
p−→ θ0. Since W (θ) is differentiable in a neighborhood

of θ0, it must be continuous at that point. The continuous mapping theorem then implies

Wn(θ̃n)
p−→ W (θ0) = V (θ0)

−1.
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(c) Consider three alternative estimators

θ̂1 = argmin
θ

ḡn(θ)
′Wn(θ̃n)ḡn(θ),

θ̂2 = argmin
θ

ḡn(θ)
′Wn(θ0)ḡn(θ),

θ̂3 = argmin
θ

ḡn(θ)
′Wn(θ)ḡn(θ).

Assuming all three estimators are consistent, show that all three standardized estimators√
n(θ̂i − θ0) have the same distribution. Find that distribution.

Solution. For θ̂1 and θ̂2, the proof follows the same steps as presented in Exercise 5(a). For
the third estimator, the continuously updating estimator, the first-order conditions become4

2

[
n−1

n∑
i=1

∇θg(Xi, θ̂3)

]′
Wn(θ̂3)

[
n−1

n∑
i=1

g(Xi, θ̂3)

]
−

[
∂ vecW (θ̂3)

−1

∂θ′

]′ [
W (θ̂3)⊗W (θ̂3)

]
× vec

[(
n−1

n∑
i=1

g(Xi, θ̂3)

)(
n−1

n∑
i=1

g(Xi, θ̂3)

)′]
= 0.

Furthermore, since Xi are iid, it can be shown that

∂ vecW (θ̂3)
−1

∂θ′
= n−1

n∑
i=1

{[I ⊗ g(Xi, θ)] + [g(Xi, θ)⊗ I]} ∂g(Xi, θ)

∂θ′
.

Notice that the first term in the sum of the first-order conditions is similar to the first-order
conditions for a non-CUE criterion, such as those presented in (7) in Exercise 5. Therefore,
a sufficient condition for the asymptotic equivalence of CUE and non-CUE estimators is
that the second term converges in probability to zero. Under this condition, the CUE first-
order conditions will reduce to the usual non-CUE first-order conditions. Without loss of
generality, consider the scalar case. In this scenario, it can be shown (see Donald and Newey,
2000) that the second term simplifies to5

Ξn(θ̂) ≡

(
n−1

n∑
i=1

g(Xi, θ̂3)

)′

Wn(θ̂3)

(
n−1

n∑
i=1

g(Xi, θ̂3)∇θ′g(Xi, θ̂3)

)
Wn(θ̂3)

(
n−1

n∑
i=1

g(Xi, θ̂3)

)

But notice that, assuming consistency (i.e., assuming θ̂3
p−→ θ0), by Slutsky’s theorem this

terms converges in probability to

Ξ(θ0) ≡ E[g(Xi, θ0)]
′︸ ︷︷ ︸

=0

W (θ0)E[g(Xi, θ0)∇θ′g(Xi, θ0)]W (θ0)E[g(Xi, θ0)]︸ ︷︷ ︸
=0

= 0.

4See Hall (2005), p.116. These equations can be derived using Dhrymes (1984). See Proposition 99,
p.115, and Proposition 106, p.124.

5When θ is a vector, then this expression is a valid expression of the first-order condition for a single
element of θ where the derivative terms would involve derivatives for a particular element of the θ vector.
Consequently this expression and all of the results to follow can easily be obtained in the case where θ is a
vector.
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With this result, deriving the asymptotic distribution of the CUE becomes straightforward.
The first-order conditions are

2

[
n−1

n∑
i=1

∇θg(Xi, θ̂3)

]′
Wn(θ̂3)

[
n−1

n∑
i=1

g(Xi, θ̂3)

]
− Ξn(θ̂) = 0.

Following 5(a), a first-order Taylor expansion of
∑n

i=1 g(Xi, θ̂3) around θ0 allows us to write

√
n(θ̂3 − θ0) ≈ −

[(
n−1

n∑
i=1

∇θg(Xi, θ̂3)

)′

Wn(θ̂)

(
n−1

n∑
i=1

∇θg(Xi, θ0)

)]−1

×

(
n−1

n∑
i=1

∇θg(Xi, θ̂3)

)′

Wn(θ̂)

(
1√
n

n∑
i=1

g(Xi, θ0)

)

−
√
n

[(
n−1

n∑
i=1

∇θg(Xi, θ̂3)

)′

Wn(θ̂)

(
n−1

n∑
i=1

∇θg(Xi, θ0)

)]−1

Ξn(θ̂).

As we known from 5(a), assuming consistency of θ̂3, the former term converges to a normal
distribution with its asymptotic variance being equal to

(Γ′
0W (θ0)Γ0)

−1Γ′
0W (θ0)V0W (θ0)Γ0(Γ

′
0W (θ0)Γ0)

−1

= (Γ′
0V

−1
0 Γ0)

−1Γ′
0V

−1
0 V0V

−1
0 Γ0(Γ

′
0V

−1
0 Γ0)

−1

= (Γ′
0V

−1
0 Γ0)

−1,

while the latter term, as argued before, converges to zero. Therefore,

√
n(θ̂3 − θ0)

d−→ N(0, (Γ′
0V

−1
0 Γ0)

−1),

concluding the proof.

(c) Show that
nḡn(θ̂1)

′Wn(θ̃n)ḡn(θ̂1) and nḡn(θ̂3)
′Wn(θ)ḡn(θ̂3)

converge in distribution to a chi-square with d − k degrees of freedom. This is the Sargan-
Hansen J-test: it rejects when the statistic above is larger than the 1 − α quantile of a chi
square with d− k degrees of freedom. Argue that this rejects more when there is no θ0 such
that E[g(Xi, θ)] = 0.

Solution. A first-order Taylor expansion of ḡn(θ̂1) around θ0 gives

ḡn(θ̂1) ≈ ḡn(θ0) +∇θḡn(θ0)(θ̂1 − θ0).

Plugging this expression into the first-order conditions we obtain

0 = ∇Qn(θ̂1) ≈ ∇θḡn(θ̂1)
′Wn(θ̃n)[ḡn(θ0) +∇θḡn(θ0)(θ̂1 − θ0)],
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whence it follows that

θ̂1 − θ0 ≈ −
[
∇θḡn(θ̂1)

′Wn(θ̃n)∇θḡn(θ0)
]−1

∇θḡn(θ̂1)
′Wn(θ̃n)ḡn(θ0).

Plugging this expression back into the initial Taylor expansion equation we can write
√
nḡn(θ̂1) ≈ [Id −∇θḡn(θ0)[∇θḡn(θ̂1)

′Wn(θ̃n)∇θḡn(θ0)]
−1∇θḡn(θ̂1)

′Wn(θ̃n)]
√
nḡn(θ0).

Under standard regularity conditions, the term inside brackets converges in probability to

Id − Γ0[Γ
′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 and

√
nḡn(θ0)

d−→ ξ ∼ N(0, V0), whence it follows, by Slutsky’s
theorem, that √

nḡn(θ̂1)
d−→ [Id − Γ0[Γ

′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 ]ξ.

Therefore

nḡn(θ̂1)
′Wn(θ̃n)ḡn(θ̂1) =

√
nḡn(θ̂1)

′Wn(θ̃n)
√
nḡn(θ̂1)

d−→ ξ′[Id − Γ0[Γ
′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 ]′V −1

0 [Id − Γ0[Γ
′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 ]ξ

= ξ′[Id − V −1
0 Γ0[Γ

′
0V

−1
0 Γ0]

−1Γ′
0]V

−1
0 [Id − Γ0[Γ

′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 ]ξ

= ξ′[V −1
0 − V −1

0 Γ0[Γ
′
0V

−1
0 Γ0]

−1Γ′
0V

−1
0 ]ξ

= (V
−1/2
0 ξ)′[Id − V

−1/2
0 Γ0[Γ

′
0V

−1
0 Γ0]

−1Γ′
0V

−1/2
0 ]V

−1/2
0 ξ

= (V
−1/2
0 ξ)′M

V
−1/2
0 Γ0

(V
−1/2
0 ξ)

= Z ′MΩ−1/2GZ,

where Z ∼ N(0, Id). Spectral decomposition on M
V

−1/2
0 G

gives

Z ′M
V

−1/2
0 Γ0

Z = Z ′HΛH ′Z = (H ′Z)′ΛH ′Z

where Λ is the diagonal matrix of eigenvalues of M
V

−1/2
0 Γ0

and H is such that H ′H = Id.

The latter implies H ′Z ∼ N(0, Id). Since M
V

−1/2
0 Γ0

is an annihilator matrix, it has d − k

eigenvalues equal one and k eigenvalues equal zero. Thus we can write

nḡn(θ̂1)
′Wn(θ̃n)ḡn(θ̂1) = (H ′Z)′

[
Id−k 0
0 0

]
H ′Z.

Let w ≡ H ′Z and partition w = (w1, w2)
′, where w1 ∼ N(0, Id−k). It follows that

nḡn(θ̂1)
′Wn(θ̃n)ḡn(θ̂1) = [w′

1 : w
′
2]

[
Id−k 0
0 0

] [
w1

w2

]
= w′

1w1 ∼ χ2
d−k,

concluding the proof. Using the same arguments as in part (a), this proof can be easily
adapted to obtain the same result for θ̂3, the continuously updating estimator. It suffices to
replace the first-order conditions for the CUE first-order conditions into the argument and
use the fact that the additional term will converge in probability to zero, as demonstrated
in part (a). The remainder of the proof remains unchanged.


