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This note provides an informal, non-comprehensive, and still-evolving introduction to linear
algebra, matrix algebra, and multivariate statistics. The order of exposition may not be
optimal at this stage. Consider it a collection of basic definitions, results, and comments
that can help you warm up for the Statistics II course. I highly recommend becoming
comfortable with the notation, concepts, and main results presented in this note as soon as
possible, so you can better enjoy the course. Have fun.

1 Row and Column Vectors

A vector v is an element of a vector space. In analysis we rarely speak of column or row
vectors, as such terminology is generally unnecessary. However, in the context of matrix
algebra, one might need to perform matrix operations involving vectors. In such cases, it
becomes important to define precisely what a vector is in the language of matrices.

Definition 1 (Row vector). A n-dimensional row vector v is an 1× n matrix

v =
[
v1 v2 · · · vn

]
.

We denote (v1, v2, . . . , vn) ≡ v.

Definition 2 (Column vector). A n-dimensional column vector v is an n× 1 matrix

v = (v1, v2, · · · , vn)′ =


v1
v2
...
vn

 ,

where (·)′ denotes the usual transposition operation.

In matrix algebra, vectors are generally treated as column vectors. One might wonder
why this convention is adopted. A plausible explanation is that the column convention
has the appealing property that if v is a vector and M is a matrix representing a linear
transformation, the product Mv, computed using the usual rules of matrix multiplication,
is another vector (specifically, a column vector) representing the image of v under that
transformation.
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2 Partitions and Conformable Partitioning

Definition 3 (Partition). Let A ∈ Rm×n, where Rm×n denotes the space of m × n real
matrices.1 A partitioning of A is a representation of A in the form of

A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq

 ,

where Aij ∈ Rmi×nj are contiguous submatrices,
∑p

i=1 mi = m, and
∑q

j=1 nj = n. The
elements Aij of the partition are called blocks.

Let’s play around a bit with partitions. We all know how to multiply matrices. LetA ∈ R4×2

and B ∈ R2×2. As the number of columns of A equals the number of rows of B, the matrix
multiplication AB is well-defined:

AB =


a11 a12
a21 a22
a31 a32
a41 a42

[b11 b12
b21 b22

]
=


a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22
a41b11 + a42b21 a41b12 + a42b22

 . (1)

Now, define A1 and A2 as the upper and bottom 2× 2 blocks of A, respectively; that is,

A1 ≡
[
a11 a12
a21 a22

]
and A2 ≡

[
a31 a32
a41 a42

]
.

This gives us the following partitioning of A:

A =

[
A1

A2

]
.

Now, A is structured as a 2×1 block matrix consisting of two 2×2 blocks, A1 and A2. This
partitioning appears to be reasonable — just an alternative way of expressing A. Therefore,
the product AB under this partitioning should still be well-defined... Correct?

AB =

[
A1

A2

] [
b11 b12
b21 b22

]
= . . . ?

Actually, it is not! Under this partitioning, A becomes a 2×1 block matrix, while B remains
a 2 × 2 real scalar matrix. Consequently, the number of columns in A no longer matches
the number of rows in B. As a result, the product AB doesn’t make sense; it becomes

1Let S be a set. More generally, one could define the m × n matrix space over S as the the set of all
m× n matrices over S and denote it by Sm×n.
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unconformable. Loosely speaking, two matrices are said to be conformable with respect to
a given operation if they possess the necessary traits for that operation to be well-defined.

What if we also partition B by letting b1 = (b11, b21)
′ and b2 = (b12, b22)

′ be the first and
second columns of B, so that B =

[
b1 b2

]
? Then we have

AB =

[
A1

A2

] [
b1 b2

]
=

[
A1b1 A1b2
A2b1 A2b2

]
=


a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22
a41b11 + a42b21 a41b12 + a42b22

 .

Under this new additional partitioning of B, A and B become partitioned conformably,
making the product operation AB conformable again. The resulting product is equivalent
to the original non-partitioned product of A and B presented in (1).

Definition 4 (Product-conformable partitioning). Two matrices A and B are said to be
partitioned conformably with respect to the product AB when A and B are partitioned
into blocks and the multiplication AB can be carried out treating the blocks as if they were
scalars, but keeping the order, and all products and sums of blocks involved are conformable.

Needless to say, conformable partitioning is necessary not only for product operations but
also for sum and subtraction operations.

In summary, any matrix can be interpreted as a block matrix in one or more ways, with each
interpretation defined by how its rows and columns are partitioned. Partitioning is very com-
mon in econometrics and can be extremely useful in matrix algebra, often greatly simplifying
algebraic derivations. However, partitioning is not arbitrary; it requires conformable parti-
tions between two (or more) matrices to ensure that all the submatrix operations involved
are well-defined.

Example 1. Consider the linear model

yi = β1 + β2x2i + β3x3i + · · ·+ βkxki + ui, ∀i = 1, 2, . . . , n. (2)

By stacking yi for all i = 1, 2, . . . , n we can write
y1
y2
...
yn

 =


1
1
...
1

 β1 +


x21

x22
...

x2n

 β2 + · · ·+


xk1

xk2
...

xkn

 βk +


u1

u2
...
un



=


1 x21 · · · xk1

1 x22 · · · xk2
...

...
. . .

...
1 x2n · · · xkn



β1

β2
...
βk

+


u1

u2
...
un

 ,

which gives us the matrix representation

Y = Xβ + u. (3)
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A common partitioning of X is obtained by defining xj = (1, x2j, x3j, . . . , xkj)
′ for all i =

1, 2, . . . , n and writing

X =


x′
1

x′
2
...
x′
n

 .

Notice that, for each j, x′
j is a 1× k row vector and β a k × 1 column vector, so that

Xβ =


x′
1

x′
2
...
x′
n

β =


x′
1β

x′
2β
...

x′
nβ

 .

Then we have 
y1
y2
...
yn

 =


x′
1β

x′
2β
...

x′
nβ

+


u1

u2
...
un

 ,

or

yi = x′
iβ + ui ∀i = 1, . . . , n. (4)

Equations (2), (3), and (4) give three alternative representations for the same linear model:
a full scalar representation, a full matrix representation, and a vector representation. The
three representations are useful in econometrics, and it is important to be familiar with all
of them, being able to transition naturally from one to another. △

3 Properties of Transposes and Orthogonal Matrices

Please recall the following basic properties of transposes.

1. (A′)′ = A.

2. (AB)′ = B′A′.

3. (A+B)′ = A′ +B′.

4. (A−1)′ = (A′)−1.

5. (cA)′ = cA′, where c is a scalar.

6. det(A′) = det(A).
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7. For a partitioning A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq

, A′ =


A′

11 A′
21 · · · A′

p1

A′
12 A′

22 · · · A′
p2

...
...

. . .
...

A′
1q A′

2q · · · A′
pq

 .

Definition 5 (Orthogonal matrix). We say that a m×n matrix A with m ≥ n is orthogonal
(or orthonormal) if A′A = In, where In is the n× n identity matrix.

Please note that A being orthogonal does not imply that A′ = A−1 or A = (A′)−1. This
property holds true only when A is a square matrix (i.e., when m = n). It doesn’t make
sense to discuss inverses of non-square matrices.2

4 Quadratic Forms and Positive (Semi)Definiteness

Definition 6 (Quadratic form). A quadratic form is a multivariate polynomial q(x) with
terms all of degree two,

q(x1, x2, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj.

Observe that any quadratic form can be written, using matrix notation, in the form x′Ax,
where x ∈ Rn and A ∈ Rn×n. Indeed, letting x = (x1, x2, . . . , xn)

′ and A =
[
aij
]
,

x′Ax =
[
x1 x2 · · · xn

]

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . . · · ·

an1 an2 · · · ann



x1

x2
...
xn

 (5)

=
[∑n

i=1 ai1xi

∑n
i=1 ai2xi · · ·

∑n
i=1 ainxi

]

x1

x2
...
xn

 (6)

=
n∑

j=1

xj

n∑
i=1

aijxi =
n∑

j=1

n∑
i=1

aijxixj = q(x1, x2, . . . , xn). (7)

Also note that general quadratic forms encompass several interesting particular cases, de-
pending on the form of A. For instance, if A is diagonal, then aij = 0 for all i ̸= j; hence,
x′Ax =

∑n
i=1 aiix

2
i . If A = In, then x′Ax = x′x =

∑n
i=1 x

2
i ; that is, the dot product of x

with itself.

Definition 7 (Dot product). Let a, b ∈ Rn. The dot product of a and b is defined as

a′b = a1b1 + a2b2 + · · ·+ akbk =
n∑

i=1

aibi.

2It does make sense, however, to discuss Moore-Penrose inverses — also known as pseudo-inverses.

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
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Quadratic forms relate to definiteness of matrices.

Definition 8. An n×n symmetric matrix A is said to be positive definite (PD) if x′Ax > 0
for all x ∈ Rn\{0}, and positive semidefinite (PSD) if x′Ax ≥ 0 for all x ∈ Rn.

We often denote “A is PD” by A ≻ 0, and “A is PSD” by A ⪰ 0. Sometimes, > and ≥ are
used instead. It’s important to note that this is just a notation. A > 0 does not imply that
all entries of A are strictly positive or anything of that sort.

Loosely speaking, positive definiteness is an important concept in Econometrics as it serves
as a kind of generalization of scalar positivity to matrices. For a scalar random variable with
variance σ2, we require the variance to be nonnegative; i.e., σ2 ≥ 0. Similarly, for a vector
random variable, we aim to ensure that its variance-covariance matrix Σ is “nonnegative”
in a suitable sense. This is achieved by requiring Σ to be nonnegative in the PSD sense,
denoted as Σ ⪰ 0.

Moreover, the notion of positive definiteness allows us to establish a partial order over sym-
metric matrices, enabling comparisons between two such matrices. This partial order is
established by defining the binary operation ⪰ as A ⪰ B ⇐⇒ A−B is PSD. This order
is also known as the Loewner order. When A and B are scalars, the Loewner order reduces
to the usual ordering in R.

Establishing an order is important, especially in the context of variance analysis. For exam-
ple, when comparing the variances of two random variables, such as two different estimators
θ̂ and θ̃, it is natural to ask which estimator has the smaller variance. If θ̂ and θ̃ are real
scalar random variables, their variances var(θ̂) and var(θ̃) are also scalars, making compari-
son straightforward using the usual ordering of R. However, when θ̂ and θ̃ are vector random
variables, their variances var(θ̂) and var(θ̃) are variance-covariance matrices. Determining
which estimator has the smallest variance becomes less straightforward. Econometricians
typically state that θ̂ has a smaller variance than θ̃ if var(θ̃) − var(θ̂) ≻ 0, indicating that
the difference between their variance-covariance matrices is positive definite.

5 Row/Column Spaces and Rank

Definition 9 (Column space). Let A ∈ Rm×n. Let v1, . . . , vn ∈ Rm×1 be the column vectors
of A. The column space of A is the set of all possible linear combinations of v1, . . . , vn.

In other words, the column space of A is the space spanned by the column vectors of A:

colsp(A) = span(v1, . . . , vn).

Definition 10 (Row space). Let A ∈ Rm×n. Let r1, . . . , rm ∈ R1×n be the column vectors
of A. The row space of A is the set of all possible linear combinations of r1, . . . , rm.

In other words, the row space of A is the space spanned by the row vectors of A:

rowsp(A) = span(r1, . . . , rm).

https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Loewner_order


Statistics II Review - Page 7 of 17 July 07, 2024

Definition 11 (Basis). A basis B of a vector space V is a linearly independent subset of V
that spans V .

In other words, a basis is a linearly independent spanning set. It’s important to note that
the columns (rows) of A span the column (row) space of A, but they do not necessarily form
a basis for this space, since A may contain linearly dependent columns (rows). However, a
maximal linearly independent subset of the column (row) vectors does provide a basis for
the column (row) space.

Definition 12 (Column and row rank). The column (row) rank of A is the dimension of
the column (row) space of A.

Please recall that the dimension of the column (row) space of A is the dimension of its basis.

Theorem 1. Let A ∈ Rm×n. The row rank of A is equal to the column rank of A.

Due to Theorem 1, we refer to the column (or row) rank of A simply as the rank of A.

Definition 13 (Full rank). Let A ∈ Rm×n. We say that A has full rank if rank(A) =
min{m,n}.

Why min{m,n}? Suppose, on the contrary, that m < n and rank(A) = n. Then rank(A) =
dim(rowsp(A)) ≤ m < n = rank(A), a contradiction. The first inequality follows form the
fact that if the row vectors of form a basis for the row space of A, then dim(rowsp(A)) = m;
and, if not, then at least two of the m row vectors of A are linearly dependent, so that
dim(rowsp(A)) < m.

Theorem 2 (Full rank and invertibility). Let A ∈ Rn×n. A is invertible (or nonsingular)
if and only if A is full rank.

6 Properties of Inverses

Please recall the following basic properties of inverses.

1. (A−1)−1 = A

2. (cA)−1 = 1
c
A−1, where c is a scalar.

3. (A′)−1 = (A−1)′

4. (AB)−1 = B−1A−1

5. (A1A2 · · ·An−1An)
−1 = A−1

n A−1
n−1 · · ·A−1

2 A−1
1 .

6. For a conformable partitioning A =

[
A1 A2

A3 A4

]
,

A−1 =

[
A−1

1 +A−1
1 A2(A4 −A3A

−1
1 A2)

−1A3A
−1
1 −A−1

1 A2(A4 −A3A
−1
1 A2)

−1

−(A4 −A3A
−1
1 A2)

−1A3A
−1
1 (A4 −A3A

−1
1 A2)

−1

]
,
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provided A1 and the Schur complement of A1 in A, A4 −A3A
−1
1 A2, are invertible.3

I stress, again, that it does not make sense to discuss inverses of non-square matrices. For
example, you should be familiar with the OLS estimator in its matrix form:

β̂ = (X ′X)−1X ′Y .

One might naively think that this formula could be simplified by applying the fourth property
and then writing

(X ′X)−1X ′Y = X−1(X ′)−1X ′Y = X−1Y .

Of course, this doesn’t make any sense. Since in general, the design matrixX has dimensions
n× k, it is not a square matrix, and therefore, “X−1” is not a well-defined object.

7 Properties of Determinants

Let A ∈ Rn×n. Please recall the following basic properties of determinants.

1. det(A) = det(A′)

2. det(cA) = cn det(A), where c is a scalar.

3. det(AB) = det(BA) = det(A) det(B), for any B ∈ Rn×n.

4. det(A−1) = (det(A))−1

5. For a conformable partitioning A =

[
A1 A2

A3 A4

]
of A,

det

[
A1 A2

0 A4

]
= det

[
A1 0
A3 A4

]
= det

[
A1 0
0 A4

]
= det(A1A4) = det(A1) det(A4).

6. If A is triangular (or diagonal, in particular), then det(A) =
∏n

i=1 aii.

7. det(A) =
∏n

i=1 λi, where λi, i = 1, . . . , n, are the eigenvalues of A.4

Just as with inversions, please note that it doesn’t make sense to talk about determinants
of non-square matrices.

3Of course, you don’t need to memorize this property. However, it is interesting to observe how things
simplify when A2 and/or A3 are zero matrices; specifically, when A is a block (upper or lower) triangular
or block diagonal matrix.

4Recall that the eigenvalues of A are the roots of the polynomial det(λIn −A) = 0.

https://en.wikipedia.org/wiki/Schur_complement
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8 Properties of Traces

Let A ∈ Rn×n. We define the trace operator tr as tr(A) =
∑n

i=1 aii. Please recall the
following basic properties of traces.

1. tr(A) = tr(A′).

2. tr(cA) = ctr(A), for c scalar.

3. tr(A+B) = tr(A) + tr(B), for any conformable B.

4. For any B ∈ Rn×m and C ∈ Rm×n, tr(BC) = tr(CB).

5. tr(A) =
∑n

i=1 λi, where λi, i = 1, . . . , n, are the eigenvalues of A.

9 Two Useful Matrix Decompositions

Eigendecomposition. Let A ∈ Rn×n with n linearly independent eigenvectors. There
exists a full rank matrix P ∈ Rn×n such that

A = PΛP−1,

where P is such that its i-th column is the i-th eigenvector of A and Λ is a diagonal matrix
of eigenvalues of A; that is, Λ = diag(λ), where λ = (λ1, . . . , λn)

′.

When A is symmetric, in particular, since eigenvectors of real symmetric matrices are or-
thogonal, by normalizing eigenvectors to make them orthonormal one can always construct
an orthogonal P , so that P−1 = P ′. This follows from the fact that a square matrix with
orthonormal columns is always orthogonal.5 Therefore, for symmetric A one can always find
P such that A = PΛP ′, with PP ′ = In.

Matrix square root. Let A ∈ Rn×n be a positive definite matrix (A ≻ 0). There exists
B such that

A = BB′.

We refer toB as thematrix square root ofA, denoted byA1/2. Please note that this is simply
a notation; it does not imply that all entries of A are being square-rooted or anything of that
sort. Matrix square roots are common in Econometrics. Variance matrices of vector random
variables are typically positive definite and symmetric; it is standard practice to take the
matrix square root of these variance matrices. Matrix square rooting is used, for example, in
proving Aitken’s theorem, which asserts that the generalized least squares estimator (GLS)
is the best linear unbiased estimator (BLUE) under heteroskedastic errors.

5By orthonormal columns here I mean that every column has magnitude 1 (that is, for every column vi,
i = 1, . . . , n, ∥vi∥= 1, where ∥·∥ denotes the usual L2-norm), and all columns are mutually orthogonal (that
is, for every j ̸= i, v′

ivj = 0).

https://math.stackexchange.com/questions/82467/eigenvectors-of-real-symmetric-matrices-are-orthogonal
https://math.stackexchange.com/questions/82467/eigenvectors-of-real-symmetric-matrices-are-orthogonal
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10 The Multivariate Normal Distribution

The probability density function of a scalar random variable x following a univariate normal
distribution N(µ, σ2) is

f(x) =
1

(2πσ2)1/2
exp

(
−(x− µ)2

2σ2

)
.

What about the multivariate case — when x is a vector random variable?

Definition 14 (Multivariate standard normal distribution). A k-dimensional random vector
x is said to follow a multivariate standard normal distribution if it has density

f(x) =
1

(2π)k/2
exp

(
−x′x

2

)
.

We denote x ∼ N(0, Ik).

Observe that x′x =
∑k

i=1 x
2
i , whence

exp

(
−x′x

2

)
= exp

(
−
∑k

i=1 x
2
i

2

)
=

k∏
i=1

exp

(
−x2

i

2

)
.

Moreover,

1

(2π)k/2
=

k∏
i=1

1

(2π)1/2
.

Therefore,

f(x) =
k∏

i=1

1

(2π)1/2
exp

(
−x2

i

2

)
.

Observe that each term in the product above is an univariate standard normal density. This
implies the following theorem.

Theorem 3. If x = (x1, x2, . . . , xk) ∼ N(0, Ik), then all the entries of x are independent
and identically distributed by univariate standard normal distributions; that is, xi ∼ N(0, 1)
for all i = 1, . . . , k.

This result has the practical implication that generating a draw from a k-dimensional random
vector x is statistically equivalent to generating k draws from a scalar random variable
x ∼ N(0, 1). Unfortunately, this property holds only for standard normal distributions and
is not preserved for general (nonstandard) normal distributions, as we will see below.

Definition 15 (Multivariate normal distribution). Let z ∼ N(0, Ik) and x = µ+Bz, with
µ ∈ Rq and B ∈ Rq×k. The k-dimensional random vector x is said to follow a multivariate
normal distribution. We denote x ∼ N(µ,Σ), where Σ ≡ BB′. The density of x is

f(x) =
1

(2π)k/2 det(Σ)1/2
exp

(
−(x− µ)′Σ−1(x− µ)

2

)
.
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Observe that E[x] = E[µ + Bz] = µ + BE[z] = µ. Further, recall that the variance of a
vector random variable x is defined by the operation var(x) = E[(x−E[x])(x−E[x])′] and
observe that

var(x) = E[(x− µ)(x− µ)′] = E[(Bz)(Bz)′] = E[Bzz′B] = BE[zz′]B = BB′ = Σ.

For this reason, µ is called the mean of the random vector x and Σ the variance (or variance-
covariance) matrix of x. Σ is always square, symmetric and positive semi-definite. One can
further verify that

Σ =


var(x1) cov(x1, x2) cov(x1, x3) · · · cov(x1, xk)

cov(x1, x2) var(x2) cov(x2, x3) · · · cov(x2, xk)
cov(x1, x3) cov(x2, x3) var(x3) · · · cov(x3, xk)

...
...

...
. . .

...
cov(x1, xk) cov(x2, xk) cov(x3, xk) · · · var(xk)

 .

It is possible to show that if x follows a multivariate normal distribution, then each element
of x follows a univariate normal distribution. However, unlike in the case of the standard
normal distribution, these univariate normal distributions will not necessarily be independent
and/or identically distributed.

Indeed, if Σ is diagonal, then xi, i = 1, . . . , k, are independent, but not necessarily identically
distributed. However, if µi = µj =: µ0 for all i, j, Σ is diagonal, and σ2

i = σ2
j =: σ2

0, then
xi, i = 1, . . . , k, are independent and identically distributed as xi ∼ N(µ0, σ

2
0). I shall

demonstrate the former result; the latter is left to the reader.

Observe that diagonality of Σ implies

det(Σ) =
k∏

i=1

σ2
i , and (x− µ)′Σ−1(x− µ) =

k∑
i=1

(xi − µi)
2

σ2
i

.

Thus

f(x) =
k∏

i=1

1

(2πσ2
i )

1/2
exp

(
−(xi − µi)

2

2σ2
i

)
.

Notice that each term in the product above corresponds to a univariate normal density for a
N(µi, σ

2
i ) distribution. This implies that the elements of x ∼ N(µ,Σ) are independent, but

not necessarily identically distributed. We have thus established the following theorem.

Theorem 4. If x = (x1, x2, . . . , xk) is a k-dimensional normally distributed vector random
variable, then xi, i = 1, . . . , k, are independent if and only if cov(xi, xj) = 0 for all i ̸= j,
j = 1, . . . , k.

Recall that independence between random variables always implies zero correlation. How-
ever, in general, zero correlation between random variables does not always imply indepen-
dence. Theorem 4 states, however, that when all random variables under consideration are
normally distributed, the converse is also true.
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Below, I present two additional useful results related to multivariate normal distributions.

Theorem 5. If x ∼ N(µ,Σ) and y = a+Bx, then y ∼ N(a + Bµ,BΣB′).

Theorem 6. If x ∼ N(0,Σ) is a k-dimensional random vector, then x′Σ−1x ∼ χ2
k.

11 A Quick Glimpse into Matrix Differential Calculus

11.1 Scalar-by-vector derivative

Let x ∈ Rk and f : Rk → R be a scalar function. Define the scalar-by-vector derivative as

∂f(x)

∂x
≡
(
∂f(x)

∂x1

,
∂f(x)

∂x2

, · · · , ∂f(x)
∂xk

)′

.

Consider the following two very simple scalar-by-vector derivative rules for quadratic forms
and dot products:

∂x′Ax

∂x
= (A+A′)x, and

∂x′v

∂x
= v. (8)

The first rule follows from the observation that x′Ax =
∑k

j=1

∑k
j=1 aijxixj, whence

∂x′Ax

∂x
=


∑k

j=1 a1jxj +
∑k

i=1 ai1xi

...∑k
j=1 akjxj +

∑k
i=1 aikxi

 = (A+A′)x.

The second rule follows from the observation that x′v =
∑k

i=1 xivi, whence

∂x′v

∂x
=


v1
v2
...
vk

 = v.

You may recognize that these scalar-by-vector operations are simply standard gradients
from multivariate calculus. The point here is that the gradient of vector/matrix forms can
be neatly represented with respect to their vector/matrix factors. Naturally, you don’t want
to recompute all these summations each time you take derivatives of quadratic forms or dot
products. Moreover, during matrix-algebraic calculations, it’s preferable to maintain consis-
tency in matrix/vector representation rather than mixing summation and matrix represen-
tations. For these reasons, it’s beneficial to become accustomed to the direct vector/matrix
representations of these gradients, such as the final representations in (8).
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The next example illustrates how even the two very simple rules discussed above can be
highly useful in practice.

Example 2. Consider again the linear model as in (2), but now in its full matrix represen-
tation (3), which I repeat here for readability.

Y = Xβ + u. (9)

We know that the OLS estimator minimizes the sum of squared errors. That is,

β̂ = arg min
β∈Rk

u′u

= arg min
β∈Rk

(Y −Xβ)′(Y −Xβ)

= arg min
β∈Rk

Y ′Y − Y ′Xβ − β′X ′Y + β′X ′Xβ

= arg min
β∈Rk

Y ′Y − 2β′X ′Y + β′X ′Xβ. (10)

The final equality follows from the fact that Y ′Xβ and β′X ′Y are scalars, whence equal to
their own transposes. Now, to find the argmin, observe that the objective function is convex,
so β̂ is the solution to the first-order conditions associated with (10). Using the rules (8),
we can express these first-order conditions as

∂u′u

∂β
= −2X ′Y + (X ′X +X ′X)β (11)

= −2X ′Y + 2X ′Xβ = 0. (12)

Then, X ′Xβ = X ′Y and, provided X ′X is nonsingular,

β̂ = (X ′X)−1X ′Y .

Using matrix calculus, we have derived the OLS estimator without any need for summations
or standard scalar algebra. △

11.2 Vector-by-vector derivative

Let x ∈ Rk and f : Rk → Rn be a vector function. Define the vector-by-vector derivative as

∂f(x)

∂x′ ≡


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xk

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xk

...
...

...
∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xk

 .

Observe that for the special case of a scalar function (that is, when n = 1) we have
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∂f(x)

∂x′ =
[
∂f1(x)
∂x1

∂f1(x)
∂x2

· · · f1(x)
∂xk

]
=

(
∂f(x)

∂x

)′

.

The notation ∂f(x)/∂x′ has the advantage of being consistent with the dimensions of its
resulting matrix: we differentiate n elements of a column vector, f(x), with respect to k
elements of a row vector, x′, and this gives us a n × k matrix. It is important to notice,
however, that this is just a handy notation; it is not conceptual.

11.3 Second-order scalar-by-vector derivative

The first-order derivative of a scalar function is a vector. A direct consequence of the
definition of vector-by-vector derivative is that the second-order derivative of a scalar function
is a matrix. We define the second-order scalar-by-vector derivative as

∂2f(x)

∂x∂x′ ≡ ∂

∂x

(
∂f(x)

∂x

)′

=


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xk

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2∂x2

· · · ∂2f(x)
∂x2∂xk

...
...

...
∂2f(x)
∂xk∂x1

∂2f(x)
∂xk∂x2

· · · ∂2f(x)
∂xk∂xk


You may recognize that these scalar-by-vector operations are simply standard hessians from
multivariate calculus.

It’s important to note that while scalar-by-vector and vector-by-vector derivatives may seem
straightforward as they resemble gradients and hessians, matrix calculus can quickly become
complex when considering other types of derivatives, such as scalar-by-matrix and matrix-by-
matrix derivatives. All these derivatives can be well-defined and possess useful vector/matrix-
algebraic properties. I won’t get into the details of these other types of derivatives here.
For a summary, you may find this Wikipedia entry to be a good initial resource. For a
comprehensive reference on matrix differential calculus, I highly recommend Magnus and
Neudecker [2019].6

11.4 Multivariate Taylor Expansions

Taylor expansions are powerful tools in statistics, used to derive asymptotic properties of
estimators resulting from nonlinear estimating equations, proving the Delta Method and
determining the asymptotic distribution of test statistics.

Let x ∈ Rk and f : Rk → R be a scalar function. The first-order scalar-by-vector Taylor
expansion is given by

f(x) = f(x0) + (x− x0)
′∂f(x0)

∂x
+ o (∥x− x0∥) as x → x0.

6For a discussion on how matrix calculus can quickly become confusing, check out the discussion on
“derisatives” in Chapter 9.3 of the 2019 third edition of the book. It’s funny.

https://en.wikipedia.org/wiki/Matrix_calculus
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The second-order scalar-by-vector Taylor expansion is given by

f(x) = f(x0) + (x− x0)
′∂f(x0)

∂x
+

1

2
(x− x0)

′∂f(x0)

∂x∂x′ (x− x0) + o
(
∥x− x0∥2

)
as x → x0.

Let x ∈ Rk and f : Rk → Rn be a vector function. The second-order vector-by-vector Taylor
expansion is given by

f(x) = f(x0) +
∂f(x0)

∂x′ (x− x0) + o(∥x− x0∥) as x → x0.

Here, o(·) is the little-o notation, defined as follows.

Definition 16 (Little-o notation for limits of functions). Assume g(x) ̸= 0 for all x ̸= x0

in some neighborhood containing x0. The notation

f(x) = o(g(x)) as x → x0 means that lim
x→x0

f(x)

g(x)
= 0.

The symbol f(x) = o(g(x)) is read “f(x) is little-oh of g(x)”, or “f(x) is of smaller order
than g(x)”, and it is intended to convey the idea that for x near x0, f(x) is small compared
to g(x); or, in other words, that f(x) goes faster to zero than g(x).

A similar definition is possible for sequences of numbers.

Definition 17 (Little-o notation for limits of sequences). The notation

xn = o(an) means that lim
n→∞

xn

an
= 0.

More importantly for our purposes, a similar definition is possible for sequences of random
variables under the notion of convergence in probability.

Definition 18. Let Zn be a sequence of random variables and an a sequence of constants.
The notation

Zn = op(an) means that
Zn

an

p−→ 0.

Observe that, in particular, when an = o(1) we have that an → 0; similarly, when Zn = op(1)

we have that Zn
p−→ 0.

In statistical applications, Taylor expansions are typically applied to sequences of random
variables. Thus, the o(·) terms in the Taylor expansions presented above are replaced by
op(1) terms. Whether applying Taylor expansions to sequences of random variables is valid
is a subtle discussion that I want to avoid here (see, e.g., Feng et al. [2013], Yang and Zhou
[2021], Patriota [2019]). Another subtle point is whether, assuming Taylor expansions can
indeed be applied to sequences of random variables, the Taylor expansion errors are in fact
op(1). Most textbooks, even advanced ones, typically ignore these issues and apply Taylor
expansions to random variables without mentioning these discussions. It is common practice
to ignore expansion errors and omit op(1) terms.



Statistics II Review - Page 16 of 17 July 07, 2024

12 Multivariate Asymptotics

Theorem 7 (Multivariate Weak Law of Large Numbers). If Xi ∈ Rm are independent and
identically distributed and E∥X∥ < ∞, then as n → ∞,

X̄n =
1

n

n∑
i=1

Xi
p−→ E[X].

Theorem 8 (Multivariate Strong Law of Large Numbers). If Xi ∈ Rm are independent and
identically distributed and E∥X∥ < ∞, then as n → ∞,

X̄n =
1

n

n∑
i=1

Xi
a.s.−−→ E[X].

The Strong Law of Large Numbers is more elegant than the Weak Law of Large Numbers;
however, for most practical purposes the Weak Law is sufficient. Thus in econometrics we
primarily use the Weak Law.

Theorem 9 (Multivariate Central Limit Theorem). If Xi ∈ Rm are i.i.d. and E∥X∥2 < ∞,
then as n → ∞ √

n(X̄n − µ)
d−→ N(0,Σ),

where µ ≡ E[X] and Σ ≡ E[(X − µ)(X − µ)′].

Theorem 10 (Multivariate Continuous Mapping Theorem). If Zn →d Z as n → ∞ and

h : Rm → Rk has the set of discontinuity points Dh such that P [Z ∈ Dh] = 0, then h(Zn)
d−→

h(Z) as n → ∞.

A special case of the Continuous Mapping Theorem is known as Slutsky’s Theorem.

Theorem 11 (Slutsky’s Theorem). If Zn
d−→ Z and cn

p−→ c as n → ∞, then

1. Zn + cn
d−→ Z + c

2. Zncn
d−→ Zc

3. Zn

cn

d−→ Z
c
,

provided c ̸= 0.

Notice that both the Continuous Mapping Theorem (CMT) and Slutky’s Theorem hold, in
particular, for convergence in probability.

Theorem 12 (Multivariate Delta Method). Let θ ∈ Rk. If
√
n(θ̂ − θ)

d−→ ξ and h : Rk → R
is continuously differentiable in a neighborhood of θ then as n → ∞

√
n(h(θ̂)− h(θ))

d−→ ∂h(θ)

∂θ′
ξ.

In particular, if ξ ∼ N(0,Σ) we have
d−→ N

(
0, ∂h(θ)

∂θ′
ξ ∂h(θ)

∂θ

)
.
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